首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection under conditions of oxidative stress, such as ischemia and reperfusion. We previously found that zebrafish Ngb can penetrate the mammalian cell membrane. In the present study, we investigated the functional characteristics of fish Ngb by using the zebrafish cell line ZF4 and zebrafish retina. We found that zebrafish Ngb translocates into ZF4 cells, but cannot protect ZF4 cells against cell death induced by hydrogen peroxide. Furthermore, we demonstrated that a chimeric ZHHH Ngb protein, in which module M1 of human Ngb is replaced by that of zebrafish, is a cell-membrane-penetrating protein that can protect ZF4 cells against hydrogen peroxide exposure. Moreover, we investigated the localization of Ngb mRNA and protein in zebrafish retina and found that Ngb mRNA is expressed in amacrine cells in the inner nuclear layer and is significantly increased in amacrine cells 3 days after optic nerve injury. Immunohistochemical studies clarified that Ngb protein levels were increased in both amacrine cells and presynaptic regions in the inner plexiform layer after nerve injury. Taken together, we hypothesize that fish Ngb, whose expression is upregulated in amacrine cells after optic nerve injury, might be released from amacrine cells, translocate into neighboring ganglion cells, and function in the early stage of optic nerve regeneration. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

2.
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (RasGTP) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (RasGDP) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with RasGDP. Most of our designed mutations narrow the gap between the affinity of Raf for RasGTP and RasGDP, producing the desired shift in binding specificity towards RasGDP. A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards RasGDP. The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of RasGDP bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the RasGDP·Raf mutant complex is found in a conformation similar to that of RasGTP and not RasGDP. Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in RasGTP is likely to explain the natural low affinity of Raf and other Ras effectors to RasGDP. Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.  相似文献   

3.
Rat glomerular basement membrane was extracted for 3 h with trypsin, pH 8.0. The supernatant solution was treated with trichloroacetic acid and the supernatant thus obtained was applied to Bio-Gel P200. The first of the two glycoprotein peaks was applied onto Sepharose derivatives of concanavalin A (Con A.).Examination of the material retained by the unsolubilized Con A and subsquently eluted with methyl α-d-mannopyranoside reveals that the principal high affinity receptor for Con A is the renal glycoprotein, having antigenic activity that induces nephrotoxic antibody. This glycoprotein has also nephritogenicity (the activity capable of inducing glomerulonephritis in homologous animals by a single foot pad injection with Freund's incomplete adjuvant). Evidence is given to show that this binding is specific.The remainder of the renal glycoprotein is unretarded and is revealed to contain none of the activities described above.When fluorescein isothiocyanate-labelled Con A is, conversely, injected into rats through the renal artery, the specific binding of Con A to the glomerular capillary loop is proved.The results demonstrated here appear to, indicate that the receptor for Con A present in normal rat glomerular basement membrane can be identified as the well-established chemical substance, the nephritogenoside, having the α-d-glucopyranosyl unit at the non-reducing terminus which is facing the endothelial aspects of the glomerular capillary loop.  相似文献   

4.
The membrane mobility agent 2-(2-methoxyethoxy)-ethyl 8-(cis-2-n-octylcyclopropyl)-octanoate promotes cap formation from wheat germ agglutinin-receptor combinations at the expense of agglutination in membranes of malignant mastocytoma cells.  相似文献   

5.
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the nervous system of vertebrates, where it protects neurons against hypoxia. Ferrous Ngb has been proposed to favor cell survival by scavenging NO and/or reducing cytochrome c released into the cytosol during hypoxic stress. Both catalytic functions require an as yet unidentified Ngb-reductase activity. Such an activity was detected both in tissue homogenates of human brain and liver and in Escherichia coli extracts. Since NADH:flavorubredoxin oxidoreductase from E. coli, that was shown to reduce ferric Ngb, shares sequence similarity with the human apoptosis-inducing factor (AIF), AIF has been proposed by us as a candidate Ngb reductase. In this study, we tested this hypothesis and show that the Ngb-reductase activity of recombinant human AIF is negligible and hence incompatible with such a physiological function.  相似文献   

6.
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Human Ngb is involved in neuroprotection under oxidative stress conditions such as ischemia and reperfusion. We previously demonstrated that, on the one hand, human ferric Ngb binds to the α-subunit of heterotrimeric G proteins (Gαi) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Gαi. On the other hand, zebrafish Ngb does not exhibit GDI activity. By using wild-type and Ngb mutants, we demonstrated that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity. The crucial residues for both GDI and neuroprotective activity, corresponding to Glu53, Arg97, Glu118, and Glu151 of human Ngb, are conserved among boreotheria of mammalia. Recently, we found that zebrafish, but not human, Ngb can translocate into cells and clarified that module M1 of zebrafish Ngb is important for protein transduction. By performing site-directed mutagenesis, we showed that Lys7, Lys9, Lys21, and Lys23 of zebrafish Ngb are crucial for protein transduction activity. Because these residues are conserved among fishes, but not among mammals, birds, reptilians, or amphibians, the ability to penetrate cell membranes may be a unique characteristic of fish Ngb proteins. Moreover, we clarified that zebrafish Ngb interacts with negatively charged cell-surface glycosaminoglycan. Taken together, these results suggest that the function of Ngb proteins has been changing dynamically throughout the evolution of life.  相似文献   

7.
Gizak A  Wrobel E  Moraczewski J  Dzugaj A 《FEBS letters》2006,580(17):4042-4046
Subcellular localization of FBPase, a regulatory enzyme of glyconeogenesis, was examined inside dividing and differentiating satellite cells from rat muscle. In dividing myoblasts, FBPase was located in cytosol and nuclei. When divisions ceased, FBPase became restricted to the cytosolic compartment and finally was found to associate with the Z-lines, as in adult muscle. Moreover, a 12-fold decrease was observed in the number of FBPase-positive nuclei associated with muscle fibres of adult rat, as compared with young muscle, possibly reflecting the reduction in number of active satellite cells during muscle maturation. The data might suggest that FBPase participates in some nuclear processes during development and regeneration of skeletal muscle.  相似文献   

8.
Oxidized human neuroglobin (Ngb), a heme protein expressed in the brain, has been proposed to act as a guanine nucleotide dissociation inhibitor (GDI) for the GDP-bound form of the heterotrimeric G protein alpha-subunit (Galpha(i)). Here, to elucidate the molecular mechanism underlying the GDI activity of Ngb, we used an glutathione-S-transferase pull-down assay to confirm that Ngb competes with G-protein betagamma-subunits (Gbetagamma) for binding to Galpha(i), and identified the Galpha(i)-binding site in Ngb by chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and sulfo-N-hydroxysuccinimide, coupled with mass spectrometry (MS). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis for tryptic peptides derived from the cross-linked Ngb-Galpha(i) complex revealed several binding regions in Ngb. Furthermore, MALDI-TOF/TOF MS analysis of the cross-linked Ngb and Galpha(i) peptides, together with the MS/MS scoring method, predicted cross-linking between Glu60 (Ngb) and Ser206 (Galpha(i)), and between Glu53 (Ngb) and Ser44 (Galpha(i)). Because Ser206 of Galpha(i) is located in the region that contacts Gbetagamma, binding of Ngb could facilitate the release of Gbetagamma from Galpha(i). Binding of Ngb to Galpha(i) would also inhibit the exchange of GDP for GTP, because Ser44 (Galpha(i)) is adjacent to the GDP-binding site and Glu53 (Ngb), which is cross-linked to Ser44 (Galpha(i)), could be located close to GDP. Thus, we have identified, for the first time, the sites of interaction between Ngb and Galpha(i), enabling us to discuss the functional significance of this binding on the GDI activity of Ngb.  相似文献   

9.
Watanabe S  Wakasugi K 《PloS one》2011,6(2):e16808
Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21, and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results showed that this chimeric Mb protein is stable and forms almost the same heme environment and α-helical structure as human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the design and production of novel functional proteins.  相似文献   

10.
Hong S  Kim CY  Lee JH  Seong GJ 《Tissue & cell》2007,39(5):365-368
2-Cys peroxiredoxins (PRDX) are novel antioxidant enzymes that eliminate the hydrogen peroxide in cells to protect the cellular components from reactive oxygen species. To evaluate whether 2-Cys PRDX family plays a role in human ciliary body, the expression of PRDX I, II and III on normal human ciliary body was investigated. Three normal human ciliary body tissues obtained from three donor eyeballs were examined by an immunohistochemistry using light microscopy and fluorescent microscopy with antibodies directed against the PRDX I, II and III. In the normal human ciliary body, PRDX I, II and III were immunolocalized to the non-pigmented epithelial cells and ciliary muscle fibers. It suggests that 2-Cys PRDXs may have physiological functions to protect cells in human ciliary body.  相似文献   

11.
Genetic selection for critical residues in ribonucleases   总被引:3,自引:0,他引:3  
Homologous mammalian proteins were subjected to an exhaustive search for residues that are critical to their structure/function. Error-prone polymerase chain reactions were used to generate random mutations in the genes of bovine pancreatic ribonuclease (RNase A) and human angiogenin, and a genetic selection based on the intrinsic cytotoxicity of ribonucleolytic activity was used to isolate inactive variants. Twenty-three of the 124 residues in RNase A were found to be intolerant to substitution with at least one particular amino acid. Twenty-nine of the 123 residues in angiogenin were likewise intolerant. In both RNase A and angiogenin, only six residues appeared to be wholly intolerant to substitution: two histidine residues involved in general acid/base catalysis and four cysteine residues that form two disulfide bonds. With few exceptions, the remaining critical residues were buried in the hydrophobic core of the proteins. Most of these residues were found to tolerate only conservative substitutions. The importance of a particular residue as revealed by this genetic selection correlated with its sequence conservation, though several non-conserved residues were found to be critical for protein structure/function. Despite voluminous research on RNase A, the importance of many residues identified herein was unknown, and those can now serve as targets for future work. Moreover, a comparison of the critical residues in RNase A and human angiogenin, which share only 35% amino acid sequence identity, provides a unique perspective on the molecular evolution of the RNase A superfamily, as well as an impetus for applying this methodology to other ribonucleases.  相似文献   

12.
The canonical process of activation of heterotrimeric G proteins by G protein coupled receptors (GPCRs) is well studied. Recently, a rapidly emerging paradigm has revealed the existence of a new, non-canonical set of cytosolic G protein modulators, guanine exchange modulators (GEMs). Among G proteins regulators, GEMs are uniquely capable of initiating pleiotropic signals: these bifunctional modulators can activate cAMP inhibitory (Gi) proteins and inhibit cAMP-stimulatory (Gs) proteins through a single short evolutionarily conserved module. A prototypical member of the GEM family, GIV/Girdin, integrates signals downstream of a myriad of cell surface receptors, e.g., growth factor RTKs, integrins, cytokine, GPCRs, etc., and translates these signals into G protein activation or inhibition. By their pleiotropic action, GIV and other GEMs modulate several key pathways within downstream signaling network. Unlike canonical G protein signaling that is finite and is triggered directly and exclusively by GPCRs, the temporal and spatial features of non-canonical activation of G protein via GIV-family of cytosolic GEMs are unusually relaxed. GIV uses this relaxed circuitry to integrate, reinforce and compartmentalize signals downstream of both growth factors and G proteins in a way that enables it to orchestrate cellular phenotypes in a sustained manner. Mounting evidence suggests the importance of GIV and other GEMs as disease modulators and their potential to serve as therapeutic targets; however, a lot remains unknown within the layers of the proverbial onion that must be systematically peeled. This perspective summarizes the key concepts of the GEM-dependent G protein signaling paradigm and discusses the multidisciplinary approaches that are likely to revolutionize our understanding of this paradigm from the atomic level to systems biology.  相似文献   

13.
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.  相似文献   

14.
Wakasugi K  Morishima I 《Biochemistry》2005,44(8):2943-2948
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. We previously demonstrated that ferric human Ngb binds to the alpha-subunits of heterotrimeric G proteins (Galpha) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Galpha. Here we have investigated the interaction between Ngb and Galpha in more detail. We report that zebrafish Ngb, which shares about 50% amino acid sequence identity with human Ngb, does not have a GDI activity for Galpha. By carrying out exon swapping between zebrafish and human Ngb and site-directed mutagenesis, we have identified several residues that are crucial for the GDI activity of human Ngb.  相似文献   

15.
16.
17.
The FeoB family of membrane embedded G proteins are involved with high affinity Fe(II) uptake in prokaryotes. Here, we report that FeoB harbors a novel GDP dissociation inhibitor-like domain that specifically stabilizes GDP-binding through an interaction with the switch I region of the G protein. We show that the stabilization of GDP binding is conserved between species despite a high degree of sequence variability in their guanine nucleotide dissociation inhibitor (GDI)-like domains, and demonstrate that the presence of the membrane embedded domain increases GDP-binding affinity roughly 150-fold over the level accomplished by action of the GDI-like domain alone. To our knowledge, this is the first example for a prokaryotic GDI, targeting a bacterial G protein-coupled membrane process. Our findings suggest that Fe(II) uptake in bacteria involves a G protein regulatory pathway reminiscent of signaling mechanisms found in higher-order organisms.  相似文献   

18.
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

19.
In some cases, proteins and other molecules which are tightly bound to affinity gels can be recovered under mild conditions by electrophoresis. We have extended this technique by running electrophoretic desorption in flat-beds of Sephadex in the presence of ampholytes (FEDS-IEF). A number of advantages of this technique are noted: due to the geometry of the apparatus, high voltages can be used which result in short running times; there are no physical barriers to the migration of the protein and no abrupt conductivity drops; desorbed samples are easily located and recovered; and relatively large sample loads can be readily accommodated. Running times are very sensitive to the experimental conditions. Affinity gels should be applied as a narrow zone, distant from the anticipated banding position of the desorbed species. A wide ampholyte interval is generally recommended. The system appears to be gentle and flexible enough to allow investigators to optimize the conditions for desorption of various affinity gel systems.  相似文献   

20.
Sumoylation is critical for DJ-1 to repress p53 transcriptional activity   总被引:2,自引:0,他引:2  
Fan J  Ren H  Fei E  Jia N  Ying Z  Jiang P  Wu M  Wang G 《FEBS letters》2008,582(7):1151-1156
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号