首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David Lydall 《The EMBO journal》2009,28(15):2174-2187
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell‐cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell‐cycle division are discussed.  相似文献   

2.
The physical ends of chromosomes are protected and stabilised by telomeres. The sequence of telomeric DNA normally consists of a simple repeating unit that is conserved in many organisms. Most plants examined have been shown to possess Arabidopsis-type telomeres consisting of many repeat copies of the sequence 5′-TTTAGGG-3′. Using fluorescent in situ hybridisation, slot blotting and the asymmetric polymerase chain reaction we demonstrate an absence of Arabidopsis-type telomeres in the genus Aloe (family Asphodelaceae). The only other plant genera so far reported without such telomeres are Allium, Nothoscordum, and Tulbaghia (family Alliaceae). As these genera and Aloe are petaloid monocots in the Asparagales, it is suggested that an absence of Arabidopsis-type telomeres may be characteristic of this related group of plants. Received: 6 September 1999; in revised form: 9 December 1999 / Accepted: 13 December 1999  相似文献   

3.
Telomere length is an important parameter of telomere function since it determines number of aspects controlling chromosome stability and cell division. Since telomeres shorten with age in humans and premature aging syndromes are often associated with the presence of short telomeres, it has been proposed that telomere length is also an important parameter for organismal aging. How mean telomere lengths are determined in humans remains puzzling, but it is clear that genetic and epigenetic factors appear to be of great importance. Experimental evidence obtained from many different organisms has provided the basis for a widely accepted counting mechanism based on a negative feedback loop for telomerase activity at the level of individual telomeres. In addition, recent studies in both normal and pathological contexts point to the existence of chromosome-specific mechanisms of telomere length regulation determining a telomere length profile, which is inherited and maintained throughout life. In this review, we recapitulate the available data, propose a synthetic view of telomere length control mechanisms in humans and suggest new approaches to test current hypotheses.  相似文献   

4.
Ku: a multifunctional protein involved in telomere maintenance   总被引:1,自引:0,他引:1  
Fisher TS  Zakian VA 《DNA Repair》2005,4(11):1215-1226
  相似文献   

5.
The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection.  相似文献   

6.
Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.  相似文献   

7.
Telomeres and subtelomere regions have vital roles in cellular homeostasis and can facilitate niche adaptation. However, information on telomere/subtelomere structure is still limited to a small number of organisms. Prior to initiation of this project, the Neurospora crassa genome assembly contained only 3 of the 14 telomeres. The missing telomeres were identified through bioinformatic mining of raw sequence data from the genome project and from clones in new cosmid and plasmid libraries. Their chromosomal locations were assigned on the basis of paired-end read information and/or by RFLP mapping. One telomere is attached to the ribosomal repeat array. The remaining chromosome ends have atypical structures in that they lack distinct subtelomere domains or other sequence features that are associated with telomeres in other organisms. Many of the chromosome ends terminate in highly AT-rich sequences that appear to be products of repeat-induced point mutation, although most are not currently repeated sequences. Several chromosome termini in the standard Oak Ridge wild-type strain were compared to their counterparts in an exotic wild type, Mauriceville. This revealed that the sequences immediately adjacent to the telomeres are usually genome specific. Finally, despite the absence of many features typically found in the telomere regions of other organisms, the Neurospora chromosome termini still retain the dynamic nature that is characteristic of chromosome ends.  相似文献   

8.
9.
Telomeres in eukaryotes comprise specific repetitive DNA sequences and binding proteins. Since their absence results in chromosomal end fusions and gene deletions, they are considered critical for genomic stability. In plants, as in yeasts and mammals, telomeres are essential for normal development and differentiation. Despite recent discoveries concerning plant telomeres, many questions remain about the mechanism of telomere homeostasis in plants. In this review, we summarize the roles of telomeres and telomerasebinding proteins in plant biology and explain how the length of a plant telomere is regulated.  相似文献   

10.
In many organisms, telomeric DNA consists of long tracts of short repeats. Shorter tracts are preferentially lengthened by telomerase, suggesting a conserved mechanism that recognizes and elongates short telomeres. Tel1p, an ATM family checkpoint kinase, plays an important role in telomere elongation, as cells lacking Tel1p have short telomeres and show reduced recruitment of telomerase components to telomeres. We show that Tel1p association increased as telomeres shortened in vivo in the presence or absence of telomerase and that Tel1p preferentially associated with the shortest telomeres. Tel1p association was independent of Tel1p kinase activity and enhanced by Mre11p. Tel1p overexpression simultaneously stimulated telomerase-mediated elongation and Tel1p association with all telomeres. Thus, Tel1p preferentially associates with the shortest telomeres and stimulates their elongation by telomerase.  相似文献   

11.
Unlike many other organisms, Drosophila maintains its telomeres by the transposition of retrotransposons to chromosome ends. Recent work shows that proteins in the RNA interference pathway specifically regulate the expression of these retrotransposons and frequency of transposition in germline cells, but do not affect retrotransposon expression or telomere function in the soma.  相似文献   

12.
Telomeres are essential for chromosome integrity, protecting the ends of eukaryotic linear chromosomes during cell proliferation. Telomeres also function in meiosis; a characteristic clustering of telomeres beneath the nuclear membrane is observed during meiotic prophase in many organisms from yeasts to plants and humans, and the role of the telomeres in meiotic pairing and the recombination of homologous chromosomes has been demonstrated in the fission yeast Schizosaccharomyces pombe and in the budding yeast Saccharomyces cerevisiae. Here we report that S. pombe Rap1 is a telomeric protein essential for meiosis. While Rap1 is conserved in budding yeast and humans, schemes for telomere binding vary among species: human RAP1 binds to the telomere through interaction with the telomere binding protein TRF2; S. cerevisiae Rap1, however, binds telomeric DNA directly, and no orthologs of TRF proteins have been identified in this organism. In S. pombe, unlike in S. cerevisiae, an ortholog of human TRF has been identified. This ortholog, Taz1, binds directly to telomere repeats [18] and is necessary for telomere clustering in meiotic prophase. Our results demonstrate that S. pombe Rap1 binds to telomeres through interaction with Taz1, similar to human Rap1-TRF2, and that Taz1-mediated telomere localization of Rap1 is necessary for telomere clustering and for the successful completion of meiosis. Moreover, in taz1-disrupted cells, molecular fusion of Rap1 with the Taz1 DNA binding domain recovers telomere clustering and largely complements defects in meiosis, indicating that telomere localization of Rap1 is a key requirement for meiosis.  相似文献   

13.
14.
Early studies of telomerase suggested that telomeres are maintained by an elegant but relatively simple and highly conserved mechanism of telomerase-mediated replication. As we learn more, it has become clear that the mechanism is elegant but not as simple as first thought. It is also evident that, although many species use similar, sometimes identical, DNA sequences for telomeres, these species express their own individuality in the way they regulate these sequences and, perhaps, in the additional tasks that they have imposed on their telomeric DNA. The striking similarities between telomeres in different species have revealed much about chromosome ends; the differences are proving to be equally informative. In addition to the differences between species that use telomerase, there are also a few exceptional organisms with atypical telomeres for which no telomerase activity has been detected. This review addresses recent studies, the insights they offer, and, perhaps more importantly, the questions they raise. Received: 14 January 1999 / Accepted: 15 January 1999  相似文献   

15.
In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senesced when telomere function was compromised by extreme shortening due to either the loss of telomerase or the double-strand break binding protein Ku. Exonuclease I effects the removal of the 5' telomeric strand, and eliminating it prevented both senescence and Mec1p telomere association. Thus, in contrast to Tel1p, Mec1p associates with short, functionally compromised telomeres.  相似文献   

16.
The checkpoint kinases ATM and ATR are redundantly required for maintenance of stable telomeres in diverse organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, the molecular basis for telomere instability in cells lacking ATM and ATR has not yet been elucidated fully in organisms that utilize both the telomere protection complex shelterin and telomerase to maintain telomeres, such as fission yeast and humans. Here, we demonstrate by quantitative chromatin immunoprecipitation (ChIP) assays that simultaneous loss of Tel1ATM and Rad3ATR kinases leads to a defect in recruitment of telomerase to telomeres, reduced binding of the shelterin complex subunits Ccq1 and Tpz1, and increased binding of RPA and homologous recombination repair factors to telomeres. Moreover, we show that interaction between Tpz1-Ccq1 and telomerase, thought to be important for telomerase recruitment to telomeres, is disrupted in tel1Δ rad3Δ cells. Thus, Tel1ATM and Rad3ATR are redundantly required for both protection of telomeres against recombination and promotion of telomerase recruitment. Based on our current findings, we propose the existence of a regulatory loop between Tel1ATM/Rad3ATR kinases and Tpz1-Ccq1 to ensure proper protection and maintenance of telomeres in fission yeast.  相似文献   

17.
S Ahmed  H Sheng  L Niu  E Henderson 《Genetics》1998,150(2):643-650
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.  相似文献   

18.
We have identified a putative homologue of the KU70 gene (AtKU70) from Arabidopsis thaliana. In order to study its function in plants we have isolated an A.thaliana line that contains a T-DNA inserted into AtKU70. Plants homozygous for this insertion appear normal and are fertile. In other organisms the KU70 gene has been shown to play a role in the repair of DNA damage induced by ionising radiation (IR) and by radiomimetic chemicals such as methylmethane sulfonate (MMS). We show that AtKU70–/– plants are hypersensitive to IR and MMS, and thus the AtKU70 gene plays a similar role in DNA repair in plants as in other organisms. The KU70 gene also plays a role in maintaining telomere length. Yeast and mammalian cells deficient for Ku70 have shortened telomeres. When we studied the telomeres in the AtKU70–/– plants we found unexpectedly that they were significantly longer (>30 kb) than was found in wild-type plants (2–4 kb). We propose several hypotheses to explain this telomere lengthening in the AtKU70–/– plants.  相似文献   

19.
Mammalian telomeres end in single-stranded, G-rich 3' overhangs resulting from both the "end-replication problem" (the inability of DNA polymerase to replicate the very end of the telomeres) and postreplication processing. Telomeric G-rich overhangs are precisely defined in ciliates; the length and the terminal nucleotides are fixed. Human telomeres have very long overhangs that are heterogeneous in size (35-600 nt), indicating that their processing must differ in some respects from model organisms. We developed telomere-end ligation protocols that allowed us to identify the terminal nucleotides of both the C-rich and the G-rich telomere strands. Up to approximately 80% of the C-rich strands terminate in CCAATC-5', suggesting that after replication a nuclease with high specificity or constrained action acts on the C strand. In contrast, the G-terminal nucleotide was less precise than Tetrahymena and Euplotes but still had a bias that changed as a function of telomerase expression.  相似文献   

20.
In many organisms, telomeres cluster to form a bouquet arrangement of chromosomes during meiotic prophase. Previously, we reported that two meiotic proteins, Bqt1 and -2, are required for tethering telomeres to the spindle pole body (SPB) during meiotic prophase in fission yeast. This study has further identified two novel, ubiquitously expressed inner nuclear membrane (INM) proteins, Bqt3 and -4, which are required for bouquet formation. We found that in the absence of Bqt4, telomeres failed to associate with the nuclear membranes in vegetative cells and consequently failed to cluster to the SPB in meiotic prophase. In the absence of Bqt3, Bqt4 protein was degraded during meiosis, leading to a phenotype similar to that of the bqt4-null mutant. Collectively, these results show that Bqt4 anchors telomeres to the INM and that Bqt3 protects Bqt4 from protein degradation. Interestingly, the functional integrity of telomeres is maintained even when they are separated from the nuclear envelope in vegetative cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号