首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane specialization through lateral compartmentalization is pivotal to the development of organisms and their response to environmental signals. The membrane raft hypothesis is lively discussed as a concept for domain formation. In recent years plant scientists have begun to critically assess the membrane raft hypothesis, and this provided the first insights into the mechanisms underlying microdomain formation in plant plasma membranes. Several groups have now shown that phytosterols can induce phase separation, a prerequisite for the formation of membrane rafts. Furthermore, the protein repertoire of detergent-resistant membranes (DRMs) has been extensively characterized and the degree of fatty acid desaturation has been identified as an important factor in DRM formation. Recent studies comprising sterol-deficient mutants demonstrated the importance of correct sterol composition and endocytosis for proper membrane compartmentalization.  相似文献   

2.
Spatial raft coalescence represents an initial step in Fc gamma R signaling   总被引:2,自引:0,他引:2  
Characterization of lipid rafts as separated membrane microdomains consist of heterogeneous proteins suggesting that lateral assembly of rafts after Ag receptor cross-linking represents the earliest signal generating process. In line with the concept, cross-linked Ag receptors have been shown to associate with detergent-insoluble raft fraction without the aid of Src family kinases. However, it has not been established whether spatial raft coalescence could also precede Src family kinase activation. In this study, we showed that spatial raft coalescence after low-affinity FcgammaR cross-linking in RAW264.7 macrophages is independent of Src family kinase activity. The lateral raft assembly was found to be ascribed to the action of ligand-binding subunits, rather than to immunoreceptor tyrosine-based activation motif-bearing signal subunits, because monomeric murine FcgammaRIIb expressed in rat basophilic leukemia cells successfully induced spatial raft reorganization after cross-linking. We also showed that extracellular and transmembrane region of FcgammaRIIb is sufficient for raft stabilization. Moreover, this receptor fragment triggers rapid calcium mobilization and linker for activation of T cells phosphorylation, in a manner sensitive to Src family kinase inhibition and to cholesterol depletion. Presence of immunoreceptor tyrosine-based inhibitory motif and addition of immunoreceptor tyrosine-based activation motif to the receptor fragment abolished and enhanced the responses, respectively, but did not affect raft stabilization. These findings support the concept that ligand-binding subunit is responsible for raft coalescence, and that this event triggers initial biochemical signaling.  相似文献   

3.
The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid–protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the “lipid raft” concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms “membrane raft” or “membrane nanodomain” are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.  相似文献   

4.
The cell membrane is a 2-dimensional non-ideal liquid containing dynamic structures on various time-space scales, and the raft domain is one of them. Existing literature supports the concept that raft dynamics may be important for its formation and function: the raft function may be supported by stimulation-induced raft association/coalescence and recruitment of various raftophilic molecules to coalesced rafts, and, importantly, they both may happen transiently. Thus, one must always consider the limited association time of a raft or a raftophilic molecule with another raft, even when one interprets the results of static experiments, such as immunofluorescence and pull-down assays. Critical considerations on the chemical fixation mechanism and immunocolocalization data suggest that the temporary nature of raft-based molecular interactions may explain why colocalization results are sensitive to subtle variations in experimental conditions employed in different laboratories.  相似文献   

5.
Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains.  相似文献   

6.
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.  相似文献   

7.
Despite enormous interest in membrane raft micro‐domains, no studies in any cell type have defined the relative compositions of the raft fractions on the basis of their major components—sterols, phospholipids, and proteins—or additional raft‐associating lipids such as the ganglioside, GM1. Our previous localization data in live sperm showed that the plasma membrane overlying the acrosome represents a stabilized platform enriched in GM1 and sterols. These findings, along with the physiological requirement for sterol efflux for sperm to function, prompted us to characterize sperm membrane fractions biochemically. After confirming limitations of commonly used detergent‐based approaches, we utilized a non‐detergent‐based method, separating membrane fractions that were reproducibly distinct based on sterol, GM1, phospholipid, and protein compositions (both mass amounts and molar ratios). Based on fraction buoyancy and biochemical composition, we identified at least three highly reproducible sub‐types of membrane raft. Electron microscopy revealed that raft fractions were free of visible contaminants and were separated by buoyancy rather than morphology. Quantitative proteomic comparisons and fluorescence localization of lipids suggested that different organelles contributed differentially to individual raft sub‐types, but that multiple membrane micro‐domain sub‐types could exist within individual domains. This has important implications for scaffolding functions broadly associated with rafts. Most importantly, we show that the common practice of characterizing membrane domains as either “raft” or “non‐raft” oversimplifies the actual biochemical complexity of cellular membranes. J. Cell. Physiol. 218: 537–548, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The soluble N-terminal ectodomain of amyloid precursor protein (sAPP), resulting from alpha-secretase-mediated proteolytic processing, has been shown to function as a growth factor for epithelial cells, including keratinocytes and thyrocytes. Extracellularly applied sAPP binds to a cell surface receptor and exhibits a patchy binding pattern reminiscent of that observed for raft proteins. Here we show that (i) the receptor-bound sAPP resides in a detergent-insoluble membrane microdomain which cofractionates in density gradients with cholesterol-rich membrane rafts and caveolae; (ii) the sAPP-binding microdomains are different from caveolae; and (iii) sAPP is capable of binding to isolated rafts and inducing tyrosine phosphorylation of some raft proteins. These observations suggest that a novel type of membrane raft is involved in sAPP signaling.  相似文献   

9.
In addition to DNA damage, exposure to irradiation involves the plasma membrane in the early phases of gamma-ray-induced cell death. The involvement of raft microdomains following gamma-radiation derives essentially from the role of ceramide as a critical component leading to apoptosis. It is demonstrated here that gamma-irradiation of a radiosensitive human head and neck squamous carcinoma cell line (SCC61) results in the triggering of raft coalescence to larger membrane platforms associated with the externalization of an acid sphingomyelinase (A-SMase), leading to ceramide release in raft, 30 min postirradiation. For the first time, we show that this structural rearrangement is defective in the radioresistant SQ20B cells and associated with the lack of A-SMase activation and translocation, a result which could explain in part their resistance to apoptosis following ionizing radiation. Moreover, we show that SQ20B are protected against radiation injury through a fivefold upper level of endogenous glutathione compared to SCC61. Overcoming the endogenous antioxidant defenses of SQ20B through either H(2)O(2) treatment or GSH depletion triggers A-SMase activation and translocation, raft coalescence, and apoptosis. On the contrary, ROS scavengers abolished these events in radiosensitive SCC61 cells. Translation of this concept to tumor biology suggests that manipulation of rafts through redox equilibrium may provide opportunities for radiosensitization of tumor cells.  相似文献   

10.
Homeoviscous adaptation (HVA), the thermal conservation of membrane fluidity/order at different body temperatures, has been observed to varying degrees in different membranes. However, HVA has not been studied in raft and non-raft regions of the plasma membrane (PM) separately. Rafts are ordered PM microdomains implicated in signal transduction, membrane traffic and cholesterol homeostasis. Using infrared spectroscopy, we measured order in raft-enriched PM (raft) and raft-depleted PM (RDPM) isolated from hepatocytes of rainbow trout (Oncorhynchus mykiss) acclimated to 5 and 20 degrees C. We found approximately 130% and 90% order compensation in raft and RDPM, respectively, suggesting their independent regulation. Raft was more ordered than RDPM in the warm-acclimated trout, a difference fully explained by a 58% enrichment of cholesterol, compared to RPDM. Unexpectedly, raft and RDPM from cold-acclimated trout did not differ in cholesterol content or order. Freezing the membrane samples during preparation had no effect on order. Treatment with cyclodextrin depleted cholesterol by 36%, 56%, and 55%, producing significant decreases in order in raft and RDPM from warm-acclimated trout and RDPM from cold-acclimated trout, respectively. However, a 69% depletion of cholesterol from raft from cold-acclimated trout had no significant effect on order. This result, and the lack of a difference in order between raft and RDPM, suggests that raft and non-raft PM in cold-acclimated trout are not spatially segregated by phase separation due to cholesterol.  相似文献   

11.
Partitioning of membrane proteins into various types of microdomains is crucial for many cellular functions. Tetraspanin‐enriched microdomains (TEMs) are a unique type of protein‐based microdomain, clearly distinct from membrane rafts, and important for several cellular processes such as fusion, migration and signaling. Paradoxically, HIV‐1 assembly/egress occurs at TEMs, yet the viral particles also incorporate raft lipids. Using different quantitative microscopy approaches, we investigated the dynamic relationship between TEMs, membrane rafts and HIV‐1 exit sites, focusing mainly on the tetraspanin CD9. Our results show that clustering of CD9 correlates with multimerization of the major viral structural component, Gag, at the plasma membrane. CD9 exhibited confined behavior and reduced lateral mobility at viral assembly sites, suggesting that Gag locally traps tetraspanins. In contrast, the raft lipid GM1 and the raft‐associated protein CD55, while also recruited to assembly/budding sites, were only transiently trapped in these membrane areas. CD9 recruitment and confinement were found to be partially dependent on cholesterol, while those of CD55 were completely dependent on cholesterol. Importantly, our findings support the emerging concept that cellular and viral components, instead of clustering at preexisting microdomain platforms, direct the formation of distinct domains for the execution of specific functions.  相似文献   

12.
Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.  相似文献   

13.
Cross-linking of surface receptors in hematopoietic cells results in the enrichment of these receptors in the rafts along with other downstream signaling molecules. A possible explanation how signal is transduced through the plasma membrane has arisen from the concept of raft. From the study of cellular responses in the plasma membrane which enrich members of the Src-family tyrosine kinase, rafts can function as centers of signal transduction by forming patches. Under physiological conditions, these elements synergize to transduce successfully a signal at the plasma membrane. Rafts are suggested to be important in controlling appropriate protein interactions in hematopoietic cells, and aggregation of rafts following receptor ligation may be a general mechanism for promoting immune cell signaling.  相似文献   

14.
Homeoviscous adaptation (HVA), the thermal conservation of membrane fluidity/order at different body temperatures, has been observed to varying degrees in different membranes. However, HVA has not been studied in raft and non-raft regions of the plasma membrane (PM) separately. Rafts are ordered PM microdomains implicated in signal transduction, membrane traffic and cholesterol homeostasis. Using infrared spectroscopy, we measured order in raft-enriched PM (raft) and raft-depleted PM (RDPM) isolated from hepatocytes of rainbow trout (Oncorhynchus mykiss) acclimated to 5 and 20 °C. We found approximately 130% and 90% order compensation in raft and RDPM, respectively, suggesting their independent regulation. Raft was more ordered than RDPM in the warm-acclimated trout, a difference fully explained by a 58% enrichment of cholesterol, compared to RPDM. Unexpectedly, raft and RDPM from cold-acclimated trout did not differ in cholesterol content or order. Freezing the membrane samples during preparation had no effect on order. Treatment with cyclodextrin depleted cholesterol by 36%, 56%, and 55%, producing significant decreases in order in raft and RDPM from warm-acclimated trout and RDPM from cold-acclimated trout, respectively. However, a 69% depletion of cholesterol from raft from cold-acclimated trout had no significant effect on order. This result, and the lack of a difference in order between raft and RDPM, suggests that raft and non-raft PM in cold-acclimated trout are not spatially segregated by phase separation due to cholesterol.  相似文献   

15.
ABSTRACT

Introduction: Phase separation as a biophysical principle drives the formation of liquid-ordered ‘lipid raft’ membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health.

Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts.

Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.  相似文献   

16.
A membrane microdomain called raft has been under extensive study since the assembly of various signal-transducing molecules into this region has been envisaged. This domain is isolated as a low buoyant membrane fraction after the extraction with a nonionic detergent such as Triton X-100. The characteristic low density of this fraction is ascribed to the enrichment of several lipids including cholesterol. To clear the molecular mechanism of raft formation, several extraction methods were applied to solubilize raft components. Cholesterol extraction using methyl-beta-cyclodextrin was found to be effective to solubilize NAP-22, a neuron-enriched Ca(2+)-dependent calmodulin-binding protein as well as one of the main protein components of brain raft. Purified NAP-22 bound to the liposomes that were made from phosphatidylcholine and cholesterol. This binding was dependent on the amount of cholesterol in liposomes. Calmodulin inhibited this binding in a dose-dependent manner. These results suggest that the presence of a calcium-dependent regulatory mechanism works on the assembly of raft within the neuron.  相似文献   

17.
Many lines of evidence show that membranes contain microdomains, "lipid rafts", that are different from the rest of the membrane in specific lipid and protein composition. In several biological systems, they were shown to be necessary for trafficking and signal transduction. Here, we investigate if lipid rafts have a role in the regulation of the G protein-mediated pathway underlying vertebrate phototransduction. Photoreceptor membranes contain detergent-resistant membrane (DRM) rafts. Rhodopsin and cGMP phosphodiesterase are found in raft and nonraft portions of the membrane; guanylate cyclase is found exclusively in the raft. Distribution of these proteins does not change in the light or dark. In contrast, the G protein transducin, the RGS9-1-Gbeta5L complex, and the p44 isoform of arrestin undergo dramatic translocation to the raft upon illumination. Phosphorylation of RGS9-1 occurs exclusively in the raft. GTPgammaS or pertussis toxin prevent the light-mediated translocation of transducin and RGS9-1, whereas AlF(minus sign)(4) causes both proteins to move to the raft in the dark. This shows that the Galphat-RGS9-1-Gbeta5L complex has the highest affinity to rafts in the transition state of the GTPase. GTPgammaS binds to transducin at a significantly slower rate in the raft, indicating that this translocation results in a reduced rhodopsin-transducin coupling. Thus, an external signal can rearrange components of a G protein pathway in specific domains of the cell membrane, changing its signaling properties. These findings could reveal a novel mechanism utilized by the cells for regulation of G protein-mediated signal transduction.  相似文献   

18.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   

19.
Molecular partitioning during host cell penetration by Toxoplasma gondii   总被引:1,自引:1,他引:0  
During invasion by Toxoplasma gondii, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole membrane (PVM) by the tight apposition of host and parasite cellular membranes. Previous studies suggested that the basis for the selective partitioning of membrane constituents may be a preference for membrane microdomains, and this hypothesis was herein tested. The partitioning of a diverse group of molecular reporters for raft and nonraft membrane subdomains was monitored during parasite invasion by time-lapse video or confocal microscopy. Unexpectedly, both raft and nonraft lipid probes, as well as both raft and nonraft cytosolic leaflet proteins, flowed unhindered past the host-parasite junction into the PVM. Moreover, neither a raft-associated type 1 transmembrane protein nor its raft-dissociated counterpart accessed the PVM, while a multispanning membrane raft protein readily did so. Considered together with previous data, these studies demonstrate that selective partitioning at the host-parasite interface is a highly complex process, in which raft association favors, but is neither necessary nor sufficient for, inclusion into the T. gondii PVM.  相似文献   

20.
Flotillin-1 is a lipid raft-associated protein that has been implicated in various cellular processes. We examined the subcellular distribution of flotillin-1 in different cell types and found that localization is cell type-specific. Flotillin-1 relocates from a cytoplasmic compartment to the plasma membrane upon the differentiation of 3T3-L1 adipocytes. To delineate the structural determinants necessary for its localization, we generated a series of truncation mutants of flotillin-1. Wild type flotillin-1 has two putative hydrophobic domains and is localized to lipid raft microdomains at the plasma membrane. Flotillin-1 fragments lacking the N-terminal hydrophobic stretch are excluded from the lipid raft compartments but remain at the plasma membrane. On the other hand, mutants with the second hydrophobic region deleted fail to traffic to the plasma membrane but are instead found in intracellular granule-like structures. Flotillin-1 specifically interacts with the adaptor protein CAP, the Src family kinase Fyn, and cortical F-actin in lipid raft microdomains in adipocytes. Furthermore, CAP and Fyn associate with different regions in the N-terminal sequences of flotillin-1. These results furthered our understanding for how flotillin-1 can function as a molecular link between lipid rafts of the plasma membrane and a multimeric signaling complex at the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号