首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.

Scope of review

This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.

Major conclusions

Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.

General significance

Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

3.
This review describes evidence that mitochondrial reactive oxygen species (mROS) are of great importance under many physiological and pathological conditions. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of mitochondria-targeted antioxidants (MitoQ and SkQs). The latter compounds look promising in treating several incurable pathologies as well as aging.  相似文献   

4.
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid β-peptide [Aβ(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Aβ(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Aβ(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Aβ(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Aβ(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Aβ(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

5.
Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosine's neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1.  相似文献   

6.
Silke Essler 《FEBS letters》2009,583(21):3531-1690
Reactive oxygen species not only serve as signaling molecules, they also contribute to oxidative stress and cell damage. The thioredoxin and glutaredoxin systems form along with peroxiredoxins a precisely regulated defense system to maintain the cellular redox homeostasis. There is evidence that nitric oxide (NO) protects cells from oxidative stress by preventing inactivation of peroxiredoxins by sulfinylation. Here we demonstrate that NO and hypoxia upregulate Sestrin2 by HIF-1-dependent and additional mechanisms and that Sestrin2 contributes to preventing peroxiredoxins from sulfinylation. We conclude that Sestrin2 plays a role in peroxide defense as a reductase for peroxiredoxins.  相似文献   

7.
Ginsenoside‐Rg1 is one of the pharmacologically active components isolated from ginseng. It was reported that Rg1 protected dopamine (DA) neurons in 6‐hydroxydopamine (6‐OHDA)‐induced Parkinson's disease (PD) models in vivo and in vitro. Our previous study also demonstrated that iron accumulation was involved in the toxicity of 6‐OHDA. However, whether Rg1 could protect DA neurons against 6‐OHDA toxicity by modulating iron accumulation and iron‐induced oxidative stress is not clear. Therefore, the present study was carried out to elucidate this effect in 6‐OHDA‐treated MES23.5 cells and the possible mechanisms were also conducted. Findings showed Rg1 restored iron‐induced decrease in mitochondrial transmembrane potential in MES23.5 cells, and increased ferrous iron influx was found in 6‐OHDA‐treated cells. Rg1 pretreatment could decrease this iron influx by inhibiting 6‐OHDA‐induced up‐regulation of an iron importer protein divalent metal transporter 1 with iron responsive element (DMT1 + IRE). Furthermore, findings also showed that the effect of Rg1 on DMT1 + IRE expression was due to its inhibition of iron regulatory proteins (IRPs) by its antioxidant effect. These results suggested that the neuroprotective effect of Rg1 against iron toxicity in 6‐OHDA‐treated cells was to decrease the cellular iron accumulation and attenuate the improper up‐regulation of DMT1 + IRE via IRE/IRP system. This provides new insight to understand the pharmacological effects of Rg1 on iron‐induced degeneration of DA neurons. J. Cell. Biochem. 111: 1537–1545, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Mitochondria-targeted antioxidants of the SkQRI family, being accumulated in energized mitochondria, protect cells from oxidative stress by increasing the level of reduced glutathione and decreasing the cell-damaging effect induced by hydrogen peroxide. Using various human transformed cell lines and SkQR1 (a fluorescent member of the SkQ family), we show that SkQR1 is ejected from chemotherapy-resistant cells by P-glycoprotein--one of the main transport proteins determining multidrug resistance typical for many neoplastic cells. It is also shown that SkQR1 ejection is neutralized by P-glycoprotein inhibitors (verapamil and pluronic L61). In experiments on K562 cells, it was found that the subline sensitive to chemotherapy is protected by SkQR1 from apoptotic action of hydrogen peroxide. Protection of the resistant subline occurs only after inhibition of P-glycoprotein.  相似文献   

9.
Hong H  Lu Y  Ji ZN  Liu GQ 《Journal of neurochemistry》2006,98(5):1465-1473
Glutathione (GSH) depletion has been implicated in the pathogenesis of neurological diseases. During GSH depletion, cells of the blood-brain barrier (BBB) are subjected to chronic oxidative stress. In this study, we investigated the effect of such stress, produced with the GSH synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO), on expression of P-glycoprotein (Pgp) in primary cultured rat brain microvessel endothelial cells that comprise the blood-brain barrier (BBB). Application of BSO to cell monolayers at concentrations up to 800 microm caused increases in expression of Pgp. Concentrations >or= 400 microm BSO decreased cell viability. Application of 200 microm BSO caused a significant increase in Pgp function activity, as assessed by rhodamine 123 (Rh123) accumulation experiments. At this concentration, BSO produced time-dependent decreases in levels of intracellular GSH and increases in levels of intracellular reactive oxygen species (iROS). The increases were also observed within 48 h following BSO treatment in mdr1a and mdr1b mRNA. Exposure of cells to BSO for 24 h produced maximal effects in the accumulation of iROS, and in expression and function of Pgp. The ROS scavenger N-acetylcysteine prevented ROS generation and attenuated the changes of both expression and activity of Pgp induced by BSO. Therefore, the transport of Pgp substrates may be affected by changing Pgp expression under conditions of chronic oxidative stress induced by GSH depletion.  相似文献   

10.
Mitochondria-targeted antioxidants of the SkQR1 family, being accumulated in energized mitochondria, protect cells from oxidative stress by increasing the level of reduced glutathione and decreasing the cell-damaging effect induced by hydrogen peroxide. Using various human transformed cell lines and SkQR1 (a fluorescent member of the SkQ family), we show that SkQRI is ejected from chemotherapy-resistant cells by P-glycoprotein - one of the main transport proteins determining multidrug resistance typical for many neoplastic cells. It is also shown that SkQR1 ejection is neutralized by P-glycoprotein inhibitors (verapamil and pluronic L61). In experiments on K562 cells, it was found that the subline sensitive to chemotherapy is protected by SkQRI from apoptotic action of hydrogen peroxide. Protection of the resistant subline occurs only after inhibition of P-glycoprotein.  相似文献   

11.
The anticancer activity of salinomycin has evoked excitement due to its recent identification as a selective inhibitor of breast cancer stem cells (CSCs) and its ability to reduce tumor growth and metastasis in vivo. In prostate cancer, similar to other cancer types, CSCs and/or progenitor cancer cells are believed to drive tumor recurrence and tumor growth. Thus salinomycin can potentially interfere with the end-stage progression of hormone-indifferent and chemotherapy-resistant prostate cancer. Androgen-responsive (LNCaP) and androgen-refractive (PC-3, DU-145) human prostate cancer cells showed dose- and time-dependent reduced viability upon salinomycin treatment; non-malignant RWPE-1 prostate cells were relatively less sensitive to drug-induced lethality. Salinomycin triggered apoptosis of PC-3 cells by elevating the intracellular ROS level, which was accompanied by decreased mitochondrial membrane potential, translocation of Bax protein to mitochondria, cytochrome c release to the cytoplasm, activation of the caspase-3 and cleavage of PARP-1, a caspase-3 substrate. Expression of the survival protein Bcl-2 declined. Pretreatment of PC-3 cells with the antioxidant N-acetylcysteine prevented escalation of oxidative stress, dissipation of the membrane polarity of mitochondria and changes in downstream molecular events. These results are the first to link elevated oxidative stress and mitochondrial membrane depolarization to salinomycin-mediated apoptosis of prostate cancer cells.  相似文献   

12.
This study investigated whether slow-releasing organic hydrogen sulfide donors act through the same mechanisms as those of inorganic donors to protect neurons from oxidative stress. By inducing oxidative stress in a neuronal cell line HT22 with glutamate, we investigated the protective mechanisms of the organic donors: ADT-OH [5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione], the most widely used moiety for synthesizing slow-releasing hydrogen sulfide donors, and ADT, a methyl derivative of ADT-OH. The organic donors were more potent than the inorganic donor sodium hydrogensulfide (NaHS) in protecting HT22 cells against glutamate toxicity. Consistent with previous publications, NaHS partially restored glutamate-depleted glutathione (GSH) levels, protected HT22 from direct free radical damage induced by hydrogen peroxide (H2O2), and NaHS protection was abolished by a KATP channel blocker glibenclamide. However, neither ADT nor ADT-OH enhanced glutamate-depleted GSH levels or protected HT22 from H2O2-induced oxidative stress. Glibenclamide, which abolished NaHS neuroprotection against oxidative stress, did not block ADT and ADT-OH neuroprotection against glutamate-induced oxidative stress. Unexpectedly, we found that glutamate induced AMPK activation and that compound C, a well-established AMPK inhibitor, remarkably protected HT22 from glutamate-induced oxidative stress, suggesting that AMPK activation contributed to oxidative glutamate toxicity. Interestingly, all hydrogen sulfide donors, including NaHS, remarkably attenuated glutamate-induced AMPK activation. However, under oxidative glutamate toxicity, compound C only increased the viability of HT22 cells treated with NaHS, but did not further increase ADT and ADT-OH neuroprotection. Thus, suppressing AMPK activation likely contributed to ADT and ADT-OH neuroprotection. In conclusion, hydrogen sulfide donors acted through differential mechanisms to confer neuroprotection against oxidative toxicity and suppressing AMPK activation was a possible mechanism underlying neuroprotection of organic hydrogen sulfide donors against oxidative toxicity.  相似文献   

13.
Hydroxytyrosol (2-(3′,4′-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3′-O-β-d-glucuronide and 4′-O-β-d-glucuronide derivatives and 2-(3′,4′-dihydroxyphenyl)ethanol-1-O-β-d-glucuronide, in comparison with the parent compound, to inhibit H2O2 induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H2O2 treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited.  相似文献   

14.
Mitochondria-targeted antioxidants of the SkQ family that accumulate in energized mitochondria protect cells from oxidative stress by increasing the level of reduced glutathione and decreasing cell damage induced by hydrogen peroxide. The exposure of various human transformed cell lines to SkQR1, a fluorescent member of the SkQ family, showed that SkQR1 was pumped out of the chemotherapy resistant cells by P-glycoprotein, one of the main transport proteins that determines multidrug resistance typical for many neoplastic cells. It was also shown that SkQR1 pumping is neutralized by P-glycoprotein inhibitors (verapamil and pluronic L61). In experiments on K-562 cells, it was found that the subline sensitive to chemotherapy is protected by SkQR1 from apoptosis induced by hydrogen peroxide. The protection of resistant subline cells is only evident after the inhibition of P-glycoprotein.  相似文献   

15.
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1 h, that was sustained for 24 h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1 h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH–CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities.  相似文献   

16.
Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required.  相似文献   

17.
18.
Oxidative stress in retinal pigment epithelium (RPE) cells may contribute to the progression of age-related macular degeneration. Thymoquinone (TQ), an active component derived from Nigella sativa, possesses antioxidative effect. However, the role of TQ in RPE cells under oxidative stress condition remains unclear. The present study aimed to examine the protective effect of TQ against hydrogen peroxide (H2O2)-induced oxidative stress in human RPE cells. Our results showed that TQ improved the cell viability and apoptosis in H2O2-induced ARPE cells. We also found that the levels of reactive oxygen species and malondialdehyde induced by H2O2 were reduced after the pretreatment of TQ. In addition, the inhibitory effect of H2O2 on the glutathione (GSH) level and superoxide dismutase activity was markedly attenuated by TQ pretreatment. Moreover, TQ enhanced the activation of Nrf2/heme oxygenase 1 (HO-1) signaling pathway in H2O2-induced ARPE cells. Knockdown of Nrf2 abolished the protective effect of TQ on H2O2-induced oxidative damage. These results suggested that TQ protected ARPE cells from H2O2-induced oxidative stress and apoptosis via the Nrf2/HO-1 signaling pathway.  相似文献   

19.
Carracedo A  Egia A  Guzmán M  Velasco G 《FEBS letters》2006,580(6):1571-1575
Here we studied the mechanism of cell sensitization to oxidative stress by analyzing the gene expression profile of serum-deprived astrocytes. Exposure to serum-free medium (i) sensitized astrocytes to oxidative stress, (ii) reduced the expression of several genes involved in protection against oxidative stress, including heme oxygenase 1, and (iii) changed the expression of several genes involved in the control of cell survival, including the stress-regulated protein p8. Our results support that serum deprivation sensitizes astrocytes to oxidative stress via a p38 mitogen-activated protein kinase-dependent p8 upregulation that leads in turn to decreased heme oxygenase 1 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号