首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Biofabrication of nanoparticles via the principles of green nanotechnology is a key issue addressed in nanobiotechnology research. There is a growing need for development of a synthesis method for producing biocompatible stable nanoparticles in order to avoid adverse effects in medical applications. We report the use of simple and rapid biosynthesis method for the preparation of gold nanoparticles using Macrophomina phaseolina (Tassi) Goid, a soil-borne pathogen. The effect of pH and temperature on the synthesis of gold nanoparticles by M. phaseolina was also assessed. Different techniques like UV-Visible Spectroscopy, Transmission Electron Microscopy (TEM), Dynamic light scattering (DLS) measurements, Fourier transform infrared (FTIR), and EDX were used to characterize the gold nanoparticles. The movement of these gold nanoparticles inside Escherichia coli (ATCC11103) along with effect on growth and viability was evaluated. The biogenic gold nanoparticle was synthesized at 37 °C temperature and neutral pH. UV-Visible Spectroscopy, TEM, EDX, and DLS measurements confirm the formation of 14 to 16 nm biogenic gold nanoparticles. FTIR substantiates the presence of protein capping on Macrophomina phaseolina-mediated gold nanoparticles. The non-toxicity of gold nanoparticles was confirmed by the growth and viability assay while the TEM images validated the entry of gold nanoparticles without disrupting the structural integrity of E. coli. Biogenic method for the synthesis of nanoparticles using fungi is novel, efficient, without toxic chemicals. These biogenic gold nanoparticles themselves are nontoxic to the microbial cells and offer a better substitute for drug delivery system.

  相似文献   

2.
High quinolone resistance of Escherichia coli limits the therapy options for urinary tract infection (UTI). In response to the urgent need for efficient treatment of multidrug-resistant infections, we designed a fimbriae targeting superparamagnetic iron oxide nanoparticle (SPION) delivering ciprofloxacin to ciprofloxacin-resistant E. coli. Bovine serum albumin (BSA) conjugated poly(acrylic acid) (PAA) coated SPIONs (BSA@PAA@SPION) were developed for encapsulation of ciprofloxacin and the nanoparticles were tagged with 4-aminophenyl-α-D-mannopyrannoside (mannoside, Man) to target E. coli fimbriae. Ciprofloxacin-loaded mannoside tagged nanoparticles (Cip-Man-BSA@PAA@SPION) provided high antibacterial activity (97.1 and 97.5%, respectively) with a dose of 32 μg/mL ciprofloxacin against two ciprofloxacin-resistant E. coli isolates. Furthermore, a strong biofilm inhibition (86.9% and 98.5%, respectively) was achieved in the isolates at a dose 16 and 8 times lower than the minimum biofilm eradication concentration (MBEC) of ciprofloxacin. Weaker growth inhibition was observed with untargeted nanoparticles, Cip-BSA@PAA@SPIONs, confirming that targeting E. coli fimbria with mannoside-tagged nanoparticles increases the ciprofloxacin efficiency to treat ciprofloxacin-resistant E. coli. Enhanced killing activity against ciprofloxacin-resistant E. coli planktonic cells and strong growth inhibition of their biofilms suggest that Cip-Man-BSA@PAA@SPION system might be an alternative and/or complementary therapeutic option for the treatment of quinolone-resistant E. coli infections.  相似文献   

3.
l-Lactate-driven ferric and nitrate reduction was studied in Escherichia coli E4. Ferric iron reduction activity in E. coli E4 was found to be constitutive. Contrary to nitrate, ferric iron could not be used as electron acceptor for growth. Ferric iron reductase activity of 9 nmol Fe2+ mg-1 protein min-1 could not be inhibited by inhibitors for the respiratory chain, like Rotenone, quinacrine, Actinomycin A, or potassium cyanide. Active cells and l-lactate-driven nitrate respiration in E. coli E4 leading to the production of nitrite, was reduced to about 20% of its maximum activity with 5 mM ferric iron, or to about 50% in presence of 5 mM ferrous iron. The inhibition was caused by nitric oxide formed by a purely chemical reduction of nitrite by ferrous iron. Nitric oxide was further chemically reduced by ferrous iron to nitrous oxide. With electron paramagnetic resonance spectroscopy, the presence of a free [Fe2+-NO] complex was shown. In presence of ferrous or ferric iron and l-lactate, nitrate was anaerobically converted to nitric oxide and nitrous oxide by the combined action of E. coli E4 and chemical reduction reactions (chemodenitrification).  相似文献   

4.
The biological activity of copper nanoparticles, able to suppress growth of E. coli cells population under contact interactions, was explored. Three types of samples with oxide layers of various sizes, thickness and composition were used in experiments. It was found out, that an increase in electron density on the external membrane of E. coli correlated with copper nanoparticles suppression capability and with lower activation energy of electron transfer on bacteria. The analysis of experimental data helps to correct conditions for obtaining nanoparticles with certain properties of their surface oxide layers. The character of temperature dependence of electron density reveals the electron type of conductivity in contact area of E. coli and nano-particles. These results help to find approach to understanding the nature of toxic influence of copper nano-particles on E. coli cells under contact interaction.  相似文献   

5.
Recombinant human H-ferritins produced from Saccharomyces cerevisiae were purified and their molecular properties were characterized. Electrophoresis of the recombinant H-ferritins showed revealed bands with mobilities similar to those of the H-ferritins produced by Escherichia coli. The pI of H-ferritins from yeast was more basic than that of H-ferritins produced by E. coli. When the cells were treated with tunicamycin, the pI of H-ferritins was driven to a sharp band with the pI range similar to that of those produced by E. coli, implying that the H-ferritins from yeast are glycosylated. The iron uptake of H-ferritins was rapid in the initial stage, with a slight reduction when compared to ferritins from E. coli. Recombinant ferritins are commonly used during synthesis of inorganic nanoparticles in their cores for chemical and industrial purposes. Transmission electron microscopy revealed that the reconstitution yield and size distribution of the core minerals were affected depending on the protein shells. The H-ferritins with higher reconstitution yields (64.4%) showed slightly larger sizes (mean 6.52 nm) with narrower size distribution.  相似文献   

6.

E. coli O157:H7 is one of the most important pathogens in food-borne diseases and is the main cause of the pseudo pandemic development of hemorrhagic colitis and hemolytic uremic syndrome. Also E. coli O157:H7 is the most common serotype of Shiga-toxin-producing E. coli. Traditional methods for detecting E. coli O157:H7 are expensive, time-consuming, and less sensitive. A method with high sensitivity and high-resolution optical detection is utilizes the LSPR property of spherical gold nanoparticles (GNP). In this work, we constructed a novel nano-bio probe to detect E. coli O157:H7 by synthesizing citrate gold nanoparticle conjugated (non-covalent bond) with specific chicken anti-E. coli O157:H7 antibody (IgY) by changing the pH of the nanoparticles’ environment. UV-visible and DLS methods were used to confirm the bonding between the antibody and nanoparticles and the LSPR sensitivity of the nano-bio probe was evaluated by ELISA method. We could optically detect this bacterium in less than 2 h by measuring the LSPR band λ max shifts of GNPs. The sensitivity of this novel biosensor was determined by about 10 CFU/ml, using the LSPR property of spherical gold nanoparticles. So that, the LSPR λ max red shifted from 530 to 543 nm in presence of 10 CFU bacterium. In conclusion, this nano biosensor can be used to detect this important pathogen among the clinical specimens.

  相似文献   

7.
The marine alginate lyase from Streptomyces sp. ALG-5, which specifically degrades poly-G block of alginate, was functionally expressed as a His-tagged form with an Escherichia coli expression system. The recombinant alginate lyase expressed with pColdI at 15 °C exhibited the highest alginate-degrading activity. The recombinant alginate lyase was efficiently immobilized onto two types of magnetic nanoparticles, superparamagnetic iron oxide nanoparticle, and hybrid magnetic silica nanoparticle, based on the affinity between His-tag and Ni2+ that displayed on the surfaces of nanoparticles. An alginate oligosaccharide mixture consisting of dimer and trimer was prepared by the immobilized alginate lyase. The immobilized enzymes were re-used repeatedly more than 10 times after magnetic separation.  相似文献   

8.
The antibacterial activity and acting mechanism of silver nanoparticles (SNPs) on Escherichia coli ATCC 8739 were investigated in this study by analyzing the growth, permeability, and morphology of the bacterial cells following treatment with SNPs. The experimental results indicated 10 μg/ml SNPs could completely inhibit the growth of 107 cfu/ml E. coli cells in liquid Mueller–Hinton medium. Meanwhile, SNPs resulted in the leakage of reducing sugars and proteins and induced the respiratory chain dehydrogenases into inactive state, suggesting that SNPs were able to destroy the permeability of the bacterial membranes. When the cells of E. coli were exposed to 50 μg/ml SNPs, many pits and gaps were observed in bacterial cells by transmission electron microscopy and scanning electron microscopy, and the cell membrane was fragmentary, indicating the bacterial cells were damaged severely. After being exposed to 10 μg/ml SNPs, the membrane vesicles were dissolved and dispersed, and their membrane components became disorganized and scattered from their original ordered and close arrangement based on TEM observation. In conclusion, the combined results suggested that SNPs may damage the structure of bacterial cell membrane and depress the activity of some membranous enzymes, which cause E. coli bacteria to die eventually.  相似文献   

9.
Escherichia coli strain BL21 is commonly used as a host strain for protein expression and purification. For structural analysis, proteins are frequently isotopically labeled with deuterium (2H), 13C, or 15N by growing E. coli cultures in a medium containing the appropriate isotope. When large quantities of fully deuterated proteins are required, E. coli is often grown in minimal media with deuterated succinate or acetate as the carbon source because these are less expensive. Despite the widespread use of BL21, we found no data on the effect of different minimal media and carbon sources on BL21 growth. In this study, we assessed the growth behavior of E. coli BL21 in minimal media with different gluconeogenic carbon sources. Though BL21 grew reasonably well on glycerol and pyruvate, it had a prolonged lag-phase on succinate (20 h), acetate (10 h), and fumarate (20 h), attributed to the physiological adaptation of E. coli cells. Wild-type strain NCM3722 (K12) grew well on all the substrates. We also examined the growth of E. coli BL21 in minimal media that differed in their salt composition but not in their source of carbon. The commonly used M9 medium did not support the optimum growth of E. coli BL21 in minimal medium. The addition of ferrous sulphate to M9 medium (otherwise lacking it) increased the growth rate of E. coli cultures and significantly increased their cell density in the stationary phase. An erratum to this article can be found at  相似文献   

10.
The aim of this work was to use citric acid in the sol–gel process to generate an inorganic polymer that allows bacterial survival for long periods of time and to study the influence of different storage temperatures. We compared gram-negative Escherichia coli and gram-positive Staphylococcus aureus, immobilized and preserved at different storage temperatures in silica matrices prepared by the method proposed. Immobilized E. coli and S. aureus in silica matrices were stored in sealed tubes at 20, 4, −20, and −70°C for 4 months during which the number of viable cells was analyzed. Results show that the immobilization in silica matrices using citric acid, to neutralize the alkalinity of the silica precursors, makes the technique not only biocompatible but also easier to perform since polymerization does not occur immediately as it does when hydrochloric acid is utilized.  相似文献   

11.
The adhesion of Escherchia coli (E. coli) to the colloids of three variable charge soils and its effect on surface charge properties and potassium adsorption of these soil colloids were investigated. The adhesion isotherms of E. coli by soil colloids can be described using the Langmuir equation. The amount of E. coli adhered by the soil colloids varied with soil type and followed the order: Ultisol from Guangxi > Oxisol from Yunnan > Ultisol from Jiangxi. The iron and aluminum oxide contents and CECs of the soils are the important factors affecting the adhesion of E. coli to soil colloids. The relatively lower iron and aluminum oxide contents and higher CEC of the Ultisol from Jiangxi led to the lower adhesion of E. coli to the soil colloids compared to the Ultisol from Guangxi and the Oxisol from Yunnan. The amount of E. coli adhered to the soil colloids decreased with increasing pH, which was consistent with the results predicted from the DLVO theory. E. coli adhesion made the zeta potential of the soil colloids more negative and reduced the isoelectric point of the soil colloids, suggesting that E. coli decreased the surface positive charge and increased negative charge of the soil colloids. In addition, E. coli adhesion increased K+ adsorption by the soil colloids. Therefore, bacterial adhesion improves the fertility of variable charge soils by increasing soil CEC because the CECs of variable charge soils are usually low.  相似文献   

12.
Klebsiella pneumoniae and Escherichia coli form mixed species biofilms in catheter-associated urinary tract infections. Recently, a detrimental effect of K. pneumoniae over E. coli was observed in mixed species biofilms grown in an artificial urine medium. The mechanism behind this competitive interaction was studied. K. pneumoniae partially outcompeted E. coli in early-stage batch-fed biofilms, whereas both microorganisms co-exist at longer times (K. pneumoniae:E. coli ratio, 55:1), as shown by cell counts and confocal microscopy. E. coli cells were scattered along the K. pneumoniae biofilm. Biofilm supernatants did not appear to contain either antimicrobial or anti-biofilm activities against E. coli. Biofilms grown under continuous flow prevented interspecies competition. K. pneumoniae showed both increased siderophore production and better growth in iron-limited media compared to E. coli. In summary, these results indicate the importance of nutrient (particularly iron) competition in the modulation of the bacterial composition of mixed species biofilms formed by uropathogenic K. pneumoniae and E. coli.  相似文献   

13.
We report the development of functionalized superparamagnetic iron oxide nanoparticles with a PEG-modified, phospholipid micelle coating, and their delivery into living cells. The size of the coated particles, as determined by dynamic light scattering and electron microscopy, was found to be between 12 and 14 nm. The PEG-phospholipid coating resulted in high water solubility and stability, and the functional groups of modified PEG allowed for bioconjugation of various moieties, including a fluorescent dye and the Tat peptide. Efficient delivery of the functionalized nanoparticles into living cells was confirmed by fluorescence microscopy, relaxation time measurements, and magnetic resonance imaging (MRI). This demonstrates the feasibility of using functionalized magnetic nanoparticles with uniform (~10 nm) sizes as an MRI contrast agent for intracellular molecular imaging in deep tissue. These micelle-coated iron oxide nanoparticles offer a versatile platform for conjugation of a variety of moieties, and their small size confers advantages for intracellular molecular imaging with minimal perturbation.Abbreviations CPP cell penetrating peptide - CPMG Carr–Purcell–Meiboom–Gill spin-echo method - CTAB cetyltrimethylammonium bromide - DLS dynamic light scattering - DMEM Dulbeccos modified Eagles medium - DSPE 1,2-distearoyl-sn-glycero-3-phosphoethanolamine - FCS fetal calf serum - FGM-2 fibroblast growth medium 2 - HDF human dermal fibroblast - HS horse serum - MDBK Madin–Darby bovine kidney - MIONs superparamagnetic iron oxide nanoparticles - mMIONs micelle-coated MIONs - MRI magnetic resonance imaging - PBS phosphate-buffered saline - PEG poly(ethylene glycol) - SPDP N-succinimidyl 3-(2-pyridyldithio)propionate - TCEP tris(2-carboxyethyl)phosphine hydrochloride - TEM transmission electron microscopy  相似文献   

14.

Background

Iron oxide nanoparticles hold great promise for future biomedical applications. To this end numerous studies on iron oxide nanoparticles have been conducted. One aspect these studies reveal is that nanoparticle size and shape can trigger different cellular responses through endocytic pathways, cell viability and early apoptosis. However, systematic studies investigating the size dependence of iron oxide nanoparticles with highly defined diameters across multiple cells lines are not available yet.

Methods

Iron oxide nanoparticles with well-defined size distributions were prepared. All samples were thoroughly characterized and the cytotoxicity for four standard cell lines (HeLa Kyoto, human osteosarcoma (U2OS), mouse fibroblasts (NIH 3T3) and mouse macrophages (J7442)) where investigated.

Results

Our findings show that small differences in size distribution (ca. 10 nm) of iron oxide nanoparticles do not influence cytotoxicity, while uptake is size dependent. Cytotoxicity is dose-dependent. Broad distributions of nanoparticles are more easily internalized as compared to the narrow distributions for two of the cell lines tested (HeLa Kyoto and mouse macrophages (J7442)).

Conclusion

The data indicate that it is not feasible to probe changes in cytotoxicity within a small size range (10 nm). However, TEM investigations of the nanoparticles indicate that cellular uptake is size dependent.

General significance

The present work compares narrow and broad distributions for various samples of carbon-coated iron oxide nanoparticles. The data highlights that cells differentiate between nanoparticle sizes as indicated by differences in cellular uptake. This information provides valuable knowledge to better understand the interaction of nanoparticles and cells.  相似文献   

15.
This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six‐months‐old were able to produce two‐fold more GFP protein than traditional Lysogeny Broth media. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:784–789, 2014  相似文献   

16.
Auxotrophic mutants of Escherichia coli W or K12 blocked before shikimic acid in the aromatic biosynthetic pathway grew poorly on shikimic acid as sole aromatic supplement. This poort growth response was correlated with a relatively poor ability to transport shikimic acid. If citrate was present in the growth medium (as it is in some commonly used basal media) the growth of some of the E. coli K12 mutants on shikimate was further reduced.Mutants were derived from pre-shikimate auxotrophs which grew rapidly on media containing shikimic acid. These derivatives all had an increased ability to transport shikimic acid. Thus, it is proposed that the growth on shikimate observed in the parent cells is restricted by their relatively poor uptake of shikimate from the medium and that this restriction may be removed by a mutation which enhances shikimate transport.Transduction analysis of the mutations which enhanced utilization and transport of shikimic acid by E. coli K12 strains indicated at least two classes. Class 1 was about 20% contransduced with the histidine region of the E. coli K12 chromosome and appeared to be coincident with a known shikimate transport locus, shiA. Class 2 was not contransduced with his. The locus (or loci) of this class is unknown. Kinetic measurements suggested that bot classes had shikimate uptake systems derived from the wild-type system. Two class 1 mutants had increased levels of otherwise unaltered wild-type transport while one class 2 mutant had an altered Michaelis constant (Km) for shikimate transport.  相似文献   

17.
Zinc oxide, an established inorganic metal oxide in nanoparticles form exhibits tremendous anti-bacterial activity. The present study focuses on determining the anti-bacterial activity of green synthesized zinc oxide nanoparticles (ZnO NPs). Results clearly validate the effective synthesis of spherical shaped nanoparticles with average size range of 60–80 nm. SEM and EDAX data buttresses the results obtained by XRD pattern in terms of size and purity. ZnO NPs exhibited dose-dependent anti-bacterial activity against Escherichia coli (E. coli) and the IC50 value was calculated to be around 20 μg/mL. Growth kinetics study was conducted in the presence of nanoparticles which demonstrated the bacteriostatic effect of ZnO NPs. The study recommends the potential use of ZnO NPs in industries like food, pharmaceutical, agriculture, cosmetic industries for its anti-bacterial activity.  相似文献   

18.
19.
Aims: The behaviour of an Escherichia coli isolate of broiler origin harbouring a blaTEM‐52‐carrying plasmid (lactose‐negative mutant of B1‐54, IncII group) was studied in an in situ continuous flow culture system, simulating the human caecum and the ascending colon during cefotaxime administration. Methods and Results: Fresh faeces from a healthy volunteer, negative for cephalosporin‐resistant E. coli, were selected to prepare inocula. The microbiota was monitored by plating on diverse selective media, and a shift in the populations of bacteria was examined by 16S rDNA PCR denaturing gradient gel electrophoresis. Escherichia coli transconjugants were verified by plasmid and pulsed‐field gel electrophoresis profiles (PFGE). The avian extended‐spectrum β‐lactamase‐positive E. coli was able to proliferate without selective pressure of cefotaxime, and E. coli transconjugants of human origin were detected 24 h after inoculation of the donor strain. Upon administration of cefotaxime to the fresh medium, an increase in the population size of E. coli B1‐54 and the transconjugants was observed. PFGE and plasmid analysis revealed a limited number of human E. coli clones receptive for the blaTEM‐52‐carrying plasmid. Conclusions: These observations provide evidence of the maintenance of an E. coli strain of poultry origin and the horizontal gene transfer in the human commensal bowel microbiota even without antimicrobial treatment. Significance and Impact of the Study: The fact that an E. coli strain of poultry origin might establish itself and transfer its bla gene to commensal human E. coli raises public health concerns.  相似文献   

20.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号