首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loop peptides stabilized by two β-strands were used as a scaffold for a phage displayed peptide library. Affinity-based screening for insulin provided peptides, which showed affinity constants of 10(5) M(-1) order for insulin over 100 times greater than their affinity for the structurally similar insulin-like growth factor 1. The results suggested that the scaffold offers a powerful tool for generating and screening peptides as ligands for drugs and biologics.  相似文献   

2.
Addiction to alcohol and drugs is a major social and economic problem, and there is considerable interest in understanding the molecular mechanisms that promote addictive drives. A number of proteins have been identified that contribute to expression of addictive behaviors. NMDA receptors (NMDARs), a subclass of ionotropic glutamate receptors, have been of particular interest because their physiological properties make them an attractive candidate for gating induction of synaptic plasticity, a molecular change thought to mediate learning and memory. NMDARs are generally inactive at the hyperpolarized resting potentials of many neurons. However, given sufficient depolarization, NMDARs are activated and exhibit long‐lasting currents with significant calcium permeability. Also, in addition to stimulating neurons by direct depolarization, NMDARs and their calcium signaling can allow strong and/or synchronized inputs to produce long‐term changes in other molecules (such as AMPA‐type glutamate receptors) which can last from days to years, binding internal and external stimuli in a long‐term memory trace. Such memories could allow salient drug‐related stimuli to exert strong control over future behaviors and thus promote addictive drives. Finally, NMDARs may themselves undergo plasticity, which can alter subsequent neuronal stimulation and/or the ability to induce plasticity. This review will address recent and past findings suggesting that NMDAR activity promotes drug‐ and alcohol‐related behaviors, with a particular focus on GluN2B subunits as possible central regulators of many addictive behaviors, as well as newer studies examining the importance of non‐canonical NMDAR subunits and endogenous NMDAR cofactors.  相似文献   

3.
Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits.  相似文献   

4.
Heterotrimeric G proteins regulate multiple effectors of which some are mediated via the Gβγ dimers. There is evidence to suggest that the functions of Gβγ dimers are not shared by all possible permutations of Gβγ complexes. Here, we report our efforts in defining the formation of distinct Gβγ dimers and their functional differences in activating phospholipase Cβ (PLCβ) isoforms. Co-immunoprecipitation assays using Cos-7 cells transiently expressing 48 different combinations of Gβ(1–4) and Gγ(1–5, 7–13) subunits showed that Gβ1 and Gβ4 could form dimers with all known Gγ subunits, whereas several dimers could not be observed for Gβ2 and Gβ3. All Gβ1γ and Gβ2γ dimers significantly stimulated PLCβ isoforms (PLCβ2  PLCβ3 > PLCβ1), but Gβ3γ and Gβ4γ dimers were poor activators of PLCβ1 and exhibited preference for PLCβ3 and PLCβ2, respectively. All Gβ subunits revealed to date contain the previously identified PLCβ2-interacting residues, but their neighboring residues in the proposed 3-D structures are different. To test if differences in these neighboring residues affect the interactions with PLCβ isoforms, we generated several Gβ3 mutants by replacing one or more of these residues with their Gβ1 counterparts. One of these mutants (M120I, S140A and A141G triple mutant) acquired enhanced PLCβ2-activating functions when co-expressed with different Gγ subunits, while the corresponding stimulation on PLCβ3 was not altered. Taken together, our results show that the exact composition of a Gβγ dimer can determine its selectivity for activating PLCβ isoforms, and certain residues in Gβ3 may account for the preferential stimulation of PLCβ3 by Gβ3γ dimers.  相似文献   

5.
Large-conductance voltage- and calcium-activated potassium (BK) channels contain four pore-forming α subunits and four modulatory β subunits. From the extents of disulfide cross-linking in channels on the cell surface between cysteine (Cys) substituted for residues in the first turns in the membrane of the S0 transmembrane (TM) helix, unique to BK α, and of the voltage-sensing domain TM helices S1–S4, we infer that S0 is next to S3 and S4, but not to S1 and S2. Furthermore, of the two β1 TM helices, TM2 is next to S0, and TM1 is next to TM2. Coexpression of α with two substituted Cys’s, one in S0 and one in S2, and β1 also with two substituted Cys’s, one in TM1 and one in TM2, resulted in two αs cross-linked by one β. Thus, each β lies between and can interact with the voltage-sensing domains of two adjacent α subunits.  相似文献   

6.
7.
Gene fusions, yielding the formation of multidomain proteins, are evolutionary events that can be utilized as phylogenetic markers. Here we describe a fusion gene comprising the α and β subunits of succinyl-coA synthetase, an enzyme of the TCA cycle, in Pezizomycotina fungi. This fusion is present in all Pezizomycotina with complete genome sequences and absent from all other organisms. Phylogenetic analysis of the α and β subunits of succinyl-CoA synthetase suggests that both subunits were duplicated and retained in Pezizomycotina while one copy was lost from other fungi. One of the duplicated copies was then fused in Pezizomycotina. Our results suggest that the fusion of the α and β subunits of succinyl-CoA synthetase can be used as a molecular marker for membership in the Pezizomycotina subphylum. If a species has the fusion it can be reliably classified as Pezizomycotina, while the absence of the fusion is suggestive that the species is not a member of this subphylum.  相似文献   

8.
9.
10.
M Gautel  O Zuffardi  A Freiburg    S Labeit 《The EMBO journal》1995,14(9):1952-1960
Cardiac myosin binding protein-C (cardiac MyBP-C, cardiac C protein) belongs to a family of proteins implicated in both regulatory and structural functions of striated muscle. For the cardiac isoform, regulatory phosphorylation in vivo by cAMP-dependent protein kinase (PKA) upon adrenergic stimulation is linked to modulation of cardiac contraction. The sequence of human cardiac MyBP-C now reveals regulatory motifs specific for this isoform. Site-directed mutagenesis identifies a LAGGGRRIS loop in the N-terminal region of cardiac MyBP-C as the key substrate site for phosphorylation by both PKA and a calmodulin-dependent protein kinase associated with the native protein. Phosphorylation of two further sites by PKA is induced by phosphorylation of this isoform-specific site. This phosphorylation switch can be mimicked by aspartic acid instead of phosphoserine. Cardiac MyBP-C is therefore specifically equipped with sensors for adrenergic regulation of cardiac contraction, possibly implicating cardiac MyBP-C in cardiac disease. The gene coding for cardiac MyBP-C has been assigned to the chromosomal location 11p11.2 in humans, and is therefore in a region of physical linkage to subsets of familial hypertrophic cardiomyopathy (FHC). This makes cardiac MyBP-C a candidate gene for chromosome 11-associated FHC.  相似文献   

11.
Like those in mammals, heterotrimeric G protein complexes have been implicated in signal transduction pathways in plants; however, the subunits themselves have not been isolated. In this study, the rice heterotrimeric G protein subunits α (Gα) and β (Gβ) were purified by affinity chromatography using anti-Gα and -Gβ antibodies and SDS-PAGE. Six and seven peptides, respectively, were identified by mass spectrometry and identified as the translation products of the Gα gene RGA1 and Gβ gene RGB1. During purification, the subunits dissociated easily from the G protein complex.  相似文献   

12.
13.
Protein kinase CK2 is a highly conserved Ser/Thr protein kinase that is ubiquitous among eucaryotic organisms and appears to play an important role in many cellular functions. This enzyme in yeast has a tetrameric structure composed of two catalytic (α and/or α′) subunits and two regulatory β and β′ subunits. Previously, we have reported isolation from yeast cells four active forms of CK2, composed of αα′ββ′, α2ββ′, α′2ββ′ and a free α′-catalytic subunit. Now, we report that in Saccharomyces cerevisiae CK2 holoenzyme regulatory β subunit cannot substitute other β′ subunit and only both of them can form fully active enzymatic unit. We have examined the subunit composition of tetrameric complexes of yeast CK2 by transformation of yeast strains containing single deletion of the β or β′ regulatory subunits with vectors carrying lacking CKB1 or CKB2 genes. CK2 holoenzyme activity was restored only in cases when both of them were present in the cell. Additional, co-immunoprecypitation experiments show that polyadenylation factor Fip1 interacts with catalytic α subunits of CK2 and interaction with beta subunits in the holoenzyme decreases CK2 activity towards this protein substrate. These data may help to elucidate the role of yeast protein kinase CK2β/β′ subunits in the regulation of holoenzyme assembly and phosphotransferase activity.  相似文献   

14.
15.
The functioning of heterotrimeric G protein α subunits in the transduction of hormonal signals to appropriate intracellular responses is well recognized. Much less is known about the distribution of isoforms and functions of G protein β subunits. Here, using specific antibodies, we documented that in plasma membranes of the thyroid cell line Nthy-ori 3-1 all Gβ isoforms-Gβ1, Gβ2, Gβ3, Gβ4 and Gβ5 are present, while the Gβ3 occurs in minute amount. In plasma membrane fraction isolated from pooled postoperative thyroids of patients with nodular goiter and Graves’ disease, the Gβ1, Gβ2, Gβ4 and Gβ5 subunits were found, whereas Gβ3 could not be detected.Competition studies revealed that the Gβ2 is the principal Gβ subunit in membranes from cultured thyroid cells, originated from normal thyroid, as well as in membranes from patients’ thyroids. This suggests that Gβ2 subunit cooperates with Gαs subunit, the most active of the Gα variants, during stimulation of adenylate cyclase which constitutes the main route of physiological thyroid stimulation.  相似文献   

16.
The small-diameter (<25 μm) and large-diameter (>30 μm) sensory neurons of the dorsal root ganglion (DRG) express distinct combinations of tetrodotoxin sensitive and tetrodotoxin-resistant Na(+) channels that underlie the unique electrical properties of these neurons. In vivo, these Na(+) channels are formed as complexes of pore-forming α and auxiliary β subunits. The goal of this study was to investigate the expression of β subunits in DRG sensory neurons. Quantitative single-cell RT-PCR revealed that β subunit mRNA is differentially expressed in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons. This raises the possibility that β subunit availability and Na(+) channel composition and functional regulation may differ in these subpopulations of sensory neurons. To further explore these possibilities, we quantitatively compared the mRNA expression of the β subunit with that of Na(v)1.7, a TTX-sensitive Na(+) channel widely expressed in both small and large DRG neurons. Na(v)1.7 and β subunit mRNAs were significantly correlated in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons, indicating that these subunits are coexpressed in the same populations. Co-immunoprecipitation and immunocytochemistry indicated that Na(v)1.7 formed stable complexes with the β(1)-β(3) subunits in vivo and that Na(v)1.7 and β(3) co-localized within the plasma membranes of small DRG neurons. Heterologous expression studies showed that β(3) induced a hyperpolarizing shift in Na(v)1.7 activation, whereas β(1) produced a depolarizing shift in inactivation and faster recovery. The data indicate that β(3) and β(1) subunits are preferentially expressed in small and large DRG neurons, respectively, and that these auxiliary subunits differentially regulate the gating properties of Na(v)1.7 channels.  相似文献   

17.
18.
When discussing health risks for children due to electromagnetic fields it is crucial to translate scientific knowledge both into adequate protection and precautionary measures for the general public and, more particularly into specific recommendations for children. It is often aimed at influencing health-related attitudes and behaviour by means of information about health affecting behaviour, health risk factors, and health promoting possibilities. Children have to be treated differently from adults in addressing their ability and willingness to modify behaviour and their competence to comprehend cognitively the sense of behavioural recommendations. Research has shown that adults can be motivated to adjust their own behaviour in order to protect their children or to be role models for their children. Hence one way to modify children’s behaviour is to address the parents and care persons. Generally education in the family, the social environment and in peer groups, nursery school and at school plays an important role in forming and influencing individual behaviour. The age of the target group has also to be taken into consideration.An important question is how to deal with scientific uncertainties when expressing EMF recommendations for children. Accentuating scientific uncertainties may under certain circumstances raise risk awareness. This can be an intended effect. But the expression of scientific uncertainties can also lead to unintended consequences in parent’s behaviour or even senseless dealing with the respective EMF source.The paper points out relevant aspects of risk communication regarding EMF and children and suggests how recommendations for children might be designed.  相似文献   

19.
20.
A series of suitable five-membered heterocyclic alternatives to thiophenes within a thienobenzoxepin class of PI3-kinase (PI3K) inhibitors was discovered. Specific thiazolobenzoxepin 8-substitution was identified that increased selectivity over PI3Kβ. PI3Kβ-sparing compound 27 (PI3Kβ Ki,app/PI3Kα Ki,app = 57) demonstrated dose-dependent knockdown of pAKT, pPRAS40 and pS6RP in vivo as well as differential effects in an in vitro proliferation cell line screen compared to pan PI3K inhibitor GDC-0941. A new structure-based hypothesis for reducing inhibition of the PI3K β isoform while maintaining activity against α, δ and γ isoforms is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号