首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase ADP-ribosylation factor 6 (ARF6) plays crucial roles in a wide variety of cell functions. To better understand the molecular mechanisms of ARF6-mediated signaling and cellular functions, we sought new ARF6-binding proteins in the mouse brain. We identified the signaling scaffold protein JNK-interacting protein 3 (JIP3), which is exclusively expressed in neurons, as a downstream effector of ARF6. Overexpression of a unique dominant negative mutant of ARF6, which was unable to interact with JIP3, and knockdown of JIP3 in mouse cortical neurons stimulated the elongation and branching of neurites. These results provide evidence that ARF6/JIP3 signaling regulates neurite morphogenesis.

Structured summary

MINT-7892698: PIP5K gamma 661 (uniprotkb:O70161) physically interacts (MI:0915) with Arf6 (uniprotkb:P62331) by anti tag coimmunoprecipitation (MI:0007)MINT-7892333, MINT-7892573, MINT-7892594, MINT-7892629, MINT-7892644, MINT-7892522, MINT-7892716: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JLP (uniprotkb:Q58A65) by anti tag coimmunoprecipitation (MI:0007)MINT-7892509: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JIP3 (uniprotkb:Q9ESN9) by pull down (MI:0096)MINT-7892770: Arf6 (uniprotkb:P62331) binds (MI:0407) to JIP3 (uniprotkb:Q9ESN9) by pull down (MI:0096)MINT-7892755: Arf6 (uniprotkb:P62331) binds (MI:0407) to JLP (uniprotkb:Q58A65) by pull down (MI:0096)MINT-7892289, MINT-7892314: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JLP (uniprotkb:Q58A65) by pull down (MI:0096)MINT-7892353, MINT-7892615, MINT-7892657, MINT-7892672, MINT-7892549, MINT-7892738: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JIP3 (uniprotkb:Q9ESN9) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

2.
Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin’s effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues.

Structured summary

MINT-7714817: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by anti tag co-immunoprecipitation (MI:0007)MINT-7714785: LEPRc (uniprotkb:P48357-2) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714951, MINT-7714744: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714859: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714885, MINT-7714672: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by bioluminescence resonance energy transfer (MI:0012)MINT-7714835: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714914, MINT-7714723, MINT-7714759: LeprB (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714703, MINT-7714936, MINT-7714772: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714872: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

3.
We show that importin β3 is essential for the nuclear import of L7. The import is mediated via the multifaceted basic amino acid clusters present in the NH2-region of L7, and is RanGTP-dependent. Using a (EGFP)3 reporter system and a FRAP assay, the role the individual clusters play as a functional NLS has been characterized, and each cluster was found to exhibit a different rate of real time nuclear uptake. We assume that having such a multiple NLS may provide L7 with preferential nuclear uptake.

Structured summary

MINT-7992735: Importin beta-3 (uniprotkb:O00410) binds (MI:0407) to L7 (uniprotkb:P18124) by biophysical (MI:0013)MINT-7992687: L7 (uniprotkb:P18124) binds (MI:0407) to Importin beta-3 (uniprotkb:O00410) by filter binding (MI:0049)MINT-7992699: L7 (uniprotkb:P18124) physically interacts (MI:0915) with Importin beta-3 (uniprotkb:O00410) by affinity chromatography technology (MI:0004)MINT-7992718: L7 (uniprotkb:P18124) physically interacts (MI:0915) with RAN (uniprotkb:P62826) by competition binding (MI:0405)MINT-7992671: L7 (uniprotkb:P18124) physically interacts (MI:0915) with Importin beta-3 (uniprotkb:O00410) by pull down (MI:0096)  相似文献   

4.
Daniela Tosoni 《FEBS letters》2009,583(2):293-300
CAP (c-Cbl associated protein)/ponsin belongs to a family of adaptor proteins implicated in cell adhesion and signaling. Here we show that CAP binds to and co-localizes with the essential endocytic factor dynamin. We demonstrate that CAP promotes the formation of dynamin-decorated tubule like structures, which are also coated with actin filaments. Accordingly, we found that the expression of CAP leads to the inhibition of dynamin-mediated endocytosis and increases EGFR stability. Thus, we suggest that CAP may coordinate the function of dynamin with the regulation of the actin cytoskeleton during endocytosis.

Structured summary:

MINT-6804322: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with Cbl (uniprotkb:Q8K4S7) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804285: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with FAK (uniprotkb:O35346), vinculin (uniprotkb:P85972) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804245, MINT-6804259, MINT-6804272: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804344: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P50570) by anti tag coimmunoprecipitation (MI:0007)MINT-6804371: dynamin 1 (uniprotkb:P21575) physically interacts (MI:0218) with CAP (uniprotkb:O35413) by anti bait coimmunoprecipitation (MI:0006)MINT-6804446, MINT-6804464: F-actin (uniprotkb:P60709), CAP (uniprotkb:Q9BX66) and dynamin 2 (uniprotkb:P50570) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

5.
βarrestins are molecular scaffolds that can bring together three-component mitogen-activated protein kinase signalling modules to promote signal compartmentalisation. We use peptide array technology to define novel interfaces between components within the c-Jun N-terminal kinase (JNK)/βarrestin signalling complex. We show that βarrestin 1 and βarrestin 2 associate with JNK3 via the kinase N-terminal domain in a region that, surprisingly, does not harbour a known ‘common docking’ motif. In the N-domain and C-terminus of βarrestin 1 and βarrestin 2 we identify two novel apoptosis signal-regulating kinase 1 binding sites and in the N-domain of the βarrestin 1 and βarrestin 2 we identify a novel MKK4 docking site.

Structured summary

MINT-7263196, MINT-7263175: Arrestin beta-2 (uniprotkb:P32121) binds (MI:0407) to ASK1 (uniprotkb:Q99683) by peptide array (MI:0081)MINT-7263136: JNK3 (uniprotkb:P53779) binds (MI:0407) to Arrestin beta-1 (uniprotkb:P49407) by peptide array (MI:0081)MINT-7263161: JNK3 (uniprotkb:P53779) binds (MI:0407) to Arrestin beta-2 (uniprotkb:P32121) by peptide array (MI:0081)MINT-7263304: Arrestin beta-1 (uniprotkb:P49407) physically interacts (MI:0915) with ASK1 (uniprotkb:Q99683) by anti tag coimmunoprecipitation (MI:0007)MINT-7263286: Arrestin beta-2 (uniprotkb:P32121) binds (MI:0407) to MKK4 (uniprotkb:P45985) by peptide array (MI:0081)MINT-7263231, MINT-7263254: Arrestin beta-1 (uniprotkb:P49407) binds (MI:0407) to ASK1 (uniprotkb:Q99683) by peptide array (MI:0081)MINT-7263269: Arrestin beta-1 (uniprotkb:P49407) binds (MI:0407) to MKK4 (uniprotkb:P45985) by peptide array (MI:0081)  相似文献   

6.
Sylvia S. Dias 《FEBS letters》2009,583(22):3543-3548
The E3 ubiqutin ligase, murne double-minute clone 2 (MDM2), promotes the degradation of p53 under normal homeostatic conditions. Several serine residues within the acidic domain of MDM2 are phosphorylated to maintain its activity but become hypo-phosphorylated following DNA damage, leading to inactivation of MDM2 and induction of p53. However, the signalling pathways that mediate these phosphorylation events are not fully understood. Here we show that the oncogenic and cell cycle-regulatory protein kinase, polo-like kinase-1 (PLK1), phosphorylates MDM2 at one of these residues, Ser260, and stimulates MDM2-mediated turnover of p53. These data are consistent with the idea that deregulation of PLK1 during tumourigenesis may help suppress p53 function.

Structured summary

MINT-7266353: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by pull down (MI:0096)MINT-7266344, MINT-7266329: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by anti bait coimmunoprecipitation (MI:0006)MINT-7266250: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) p53 (uniprotkb:P04637) by protein kinase assay (MI:0424)MINT-7266241, MINT-7266318: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:P23804) by protein kinase assay (MI:0424)MINT-7266231, MINT-7266805, MINT-7266264, MINT-7266299: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

7.
ELL-associated protein 30 (EAP30) was initially characterized as a component of the Holo-ELL complex, which contains the elongation factor ELL. Both ELL and Holo-ELL stimulate RNA pol II elongation in vitro. However, ELL and not Holo-ELL inhibits RNA pol II initiation. It is not clear how these two discrete functions of ELL are regulated. Here we report that mini-chromosome maintenance 2 (MCM2) binds to EAP30 and show that MCM2 competes with ELL for binding to EAP30 thus potentially modulating the stability of Holo-ELL.

Structured summary

MINT-7277033: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by anti tag coimmunoprecipitation (MI:0007)MINT-7277085: EAP30 (uniprotkb:Q96H20) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7277072: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by anti tag coimmunoprecipitation (MI:0007)MINT-7277100: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by competition binding (MI:0405)MINT-7277153: MCM2 (uniprotkb:P49736) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7276989: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by pull down (MI:0096)MINT-7277005: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by pull down (MI:0096)MINT-7276960, MINT-7277168: MCM2 (uniprotkb:P49736) physically interacts (MI:0915) with EAP30 (uniprotkb:Q96H20) by two hybrid (MI:0018)MINT-7276971, MINT-7277121, MINT-7277137: MCM2 (uniprotkb:P49736) binds (MI:0407) to EAP30 (uniprotkb:Q96H20) by pull down (MI:0096)MINT-7277018, MINT-7277061: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

8.
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.

Structured summary

MINT-7034452: USP8 (uniprotkb:P40818) physically interacts (MI:0218) with NBR1 (uniprotkb:Q14596) by pull down (MI:0096)MINT-7034438: SQSTM1 (uniprotkb:Q13501) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034309: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034323: NBR1 (uniprotkb:P97432) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034233: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with USP8 (uniprotkb:P40818) by two hybrid (MI:0018)MINT-7034207: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Robld3 (uniprotkb:Q9JHS3) by two hybrid (MI:0018)MINT-7034400, MINT-7034418: NBR1 (uniprotkb:Q14596) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034167: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin B (uniprotkb:Q78XY9) by two hybrid (MI:0018)MINT-7034470: NBR1 (uniprotkb:Q14596) and USP8 (uniprotkb:P40818) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034194: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3-A (uniprotkb:Q91VR7) by two hybrid (MI:0018)MINT-7034336: SQSTM1 (uniprotkb:Q13501) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034375: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3 (uniprotkb:Q9H492) by pull down (MI:0096)MINT-7034350: NBR1 (uniprotkb:Q14596) and Ubiquitin (uniprotkb:P62988) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034181: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Tmed10 (uniprotkb:Q9D1D4) by two hybrid (MI:0018)MINT-7034220: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with ube2o (uniprotkb:Q6ZPJ3) by two hybrid (MI:0018)  相似文献   

9.
Xiaomei Yang 《FEBS letters》2010,584(11):2207-2212
The beta-2 adrenergic receptor (β2AR) has a carboxyl terminus motif that can interact with PSD-95/discs-large/ZO1 homology (PDZ) domain-containing proteins. In this paper, we identified membrane-associated guanylate kinase inverted-3 (MAGI-3) as a novel binding partner of β2AR. The carboxyl terminus of β2AR binds with high affinity to the fifth PDZ domain of MAGI-3, with the last four amino acids (D-S-L-L) of the receptor being the key determinants of the interaction. In cells, the association of full-length β2AR with MAGI-3 occurs constitutively and is enhanced by agonist stimulation of the receptor. Our data also demonstrated that β2AR-stimulated extracellular signal-regulated kinase-1/2 (ERK1/2) activation was substantially retarded by MAGI-3 expression. These data suggest that MAGI-3 regulates β2AR-mediated ERK activation through the physical interaction between β2AR and MAGI-3.

Structured summary

MINT-7716556: beta2AR (uniprotkb:P07550) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q5TCQ9) by anti tag coimmunoprecipitation (MI:0007)MINT-7716593: beta2AR (uniprotkb:P18762) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q9EQJ9) by anti bait coimmunoprecipitation (MI:0006)MINT-7716630: MAGI-3 (uniprotkb:Q5TCQ9) and beta2AR (uniprotkb:P07550) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7716382, MINT-7716335: MAGI-3 (uniprotkb:Q5TCQ9) physically interacts (MI:0915) with beta2AR (uniprotkb:P07550) by pull down (MI:0096)MINT-7716320, MINT-7716422, MINT-7716502, MINT-7716450, MINT-7716470: beta2AR (uniprotkb:P07550) binds (MI:0407) to MAGI-3 (uniprotkb:Q5TCQ9) by pull down (MI:0096)  相似文献   

10.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

11.
Although the precise intracellular roles of S100 proteins are not fully understood, these proteins are thought to be involved in Ca2+-dependent diverse signal transduction pathways. In this report, we identified importin α as a novel target of S100A6. Importin α contains armadillo repeats, essential for binding to nuclear localization signals. Based on the results from GST pull-down assay, gel-shift assay, and co-immunoprecipitation, we demonstrated that S100A6 specifically interacts with the armadillo repeats of importin α in a Ca2+-dependent manner, resulting in inhibition of the nuclear localization signal (NLS)-importin α complex formation in vitro and in vivo. These results indicate S100A6 may regulate the nuclear transport of NLS-cargos in response to increasing concentrations of intracellular Ca2+.

Structured summary

MINT-8045244: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8044928: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044941: Importin alpha (uniprotkb:P52292) and S100A6 (uniprotkb:P06703) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)MINT-8044997: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by anti bait coimmunoprecipitation (MI:0006)MINT-8045031: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044917: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045257: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8045015: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045267: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) and npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8045316: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) by pull down (MI:0096)MINT-8045302: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with NPM1 (uniprotkb:P06748) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045290: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8044963, MINT-8044985: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by anti bait coimmunoprecipitation (MI:0006)MINT-8044951: Importin alpha (uniprotkb:P52292) and S100A2 (uniprotkb:P29034) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)  相似文献   

12.
Velma V  Carrero ZI  Cosman AM  Hebert MD 《FEBS letters》2010,584(23):4735-4739
Coilin is a nuclear protein that plays a role in Cajal body formation. The function of nucleoplasmic coilin is unknown. Here we report that coilin interacts with Ku70 and Ku80, which are major players in the DNA repair process. Ku proteins compete with SMN and SmB′ proteins for coilin interaction sites. The binding domain on coilin for Ku proteins cannot be localized to one discrete region, and only full-length coilin is capable of inhibiting in vitro non-homologous DNA end joining (NHEJ). Since Ku proteins do not accumulate in CBs, these findings suggest that nucleoplasmic coilin participates in the regulation of DNA repair.

Structured summary

MINT-8052983:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SmB′ (uniprotkb:P14678) by pull down (MI:0096)MINT-8052941:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by competition binding (MI:0405)MINT-8052765:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052971:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SMN (uniprotkb:Q16637) by pull down (MI:0096)MINT-8052957:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by competition binding (MI:0405)MINT-8052894, MINT-8052908:coilin (uniprotkb:P38432) binds (MI:0407) to Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052804:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by anti bait coimmunoprecipitation (MI:0006)MINT-8052925:coilin (uniprotkb:P38432) binds (MI:0407) to Ku70 (uniprotkb:P12956) by pull down (MI:0096)MINT-8052786:Ku80 (uniprotkb:P13010) physically interacts (MI:0914) with coilin (uniprotkb:P38432) and Ku70 (uniprotkb:P12956) by anti bait coimmunoprecipitation (MI:0006)MINT-8052776:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by pull down (MI:0096)  相似文献   

13.
Previous studies have shown that testisin promotes malignant transformation in cancer cells. To define the mechanism of testisin-induced carcinogenesis, we performed yeast two-hybrid analysis and identified maspin, a tumor suppressor protein, as a testisin-interacting molecule. The direct interaction and cytoplasmic co-localization of testisin with maspin was confirmed by immunoprecipitation and confocal analysis, respectively. In cervical cancer cells, maspin modulated cell death and invasion; however, these effects were inhibited by testisin in parallel experiments. Of interest, the doxorubicin resistance was dramatically reduced by testisin knockdown (P = 0.016). Moreover, testisin was found to be over-expressed in cervical cancer samples as compared to matched normal cervical tissues. Thus, we postulate that testisin may promote carcinogenesis by inhibiting tumor suppressor activity of maspin.

Structured summary

MINT-7712215, MINT-7712176: Testisin (uniprotkb:Q9Y6M0) binds (MI:0407) to Maspin (uniprotkb:P36952) by pull down (MI:0096)MINT-7712188: Testisin (uniprotkb:Q9Y6M0) and Maspin (uniprotkb:P36952) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7712115: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by two-hybrid (MI:0018)MINT-7712162, MINT-7712128: Maspin (uniprotkb:P36952) physically interacts (MI:0915) with Testisin (uniprotkb:Q9Y6M0) by anti bait co-immunoprecipitation (MI:0006)MINT-7712147: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

14.
S100 proteins are a subfamily of the EF-hand type calcium sensing proteins, the exact biological functions of which have not been clarified yet. In this work, we have identified Cyclophilin 40 (CyP40) and FKBP52 (called immunophilins) as novel targets of S100 proteins. These immunophilins contain a tetratricopeptide repeat (TPR) domain for Hsp90 binding. Using glutathione-S transferase pull-down assays and immunoprecipitation, we have demonstrated that S100A1 and S100A2 specifically interact with the TPR domains of FKBP52 and CyP40 in a Ca2+-dependent manner, and lead to inhibition of the CyP40-Hsp90 and FKBP52-Hsp90 interactions. These findings have suggested that the Ca2+/S100 proteins are TPR-targeting regulators of the immunophilins-Hsp90 complex formations.

Structured summary

MINT-7710442: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710192: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710412: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710374: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710452: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710387: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710279: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710224: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710464: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710249: Cyp40 (uniprotkb:P26882) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710422: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710348: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710208: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710265: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710361: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710476: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710316: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A1 (uniprotkb:P35467) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710432: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710488: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710329: S100A6 (uniprotkb:P14069) physically interacts (MI:0914) with FKBP52 (uniprotkb:P30416) and Cyp40 (uniprotkb:Q08752) by anti bait coimmunoprecipitation (MI:0006)MINT-7710295: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with Hsp90 (uniprotkb:P07900) and S100A1 (uniprotkb:P35467) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

15.
Smita Jha 《FEBS letters》2009,583(19):3109-5638
Large conductance Ca2+-activated K+ channels (BKCa) encoded by the Slo1 gene play a role in the physiological regulation of many cell types. Here, we show that the β1 subunit of Na+/K+-ATPase (NKβ1) interacts with the cytoplasmic COOH-terminal region of Slo1 proteins. Reduced expression of endogenous NKβ1 markedly inhibits evoked BKCa currents with no apparent effect on their gating. In addition, NKβ1 down-regulated cells show decreased density of Slo1 subunits on the cell surface.

Structured summary

MINT-7260438, MINT-7260555: Slo1 (uniprotkb:Q8AYS8) physically interacts (MI:0915) with NKbeta1 (uniprotkb:P08251) by anti bait coimmunoprecipitation (MI:0006)MINT-7260587, MINT-7260606, MINT-7260619, MINT-7260632: Slo1 (uniprotkb:Q08460) physically interacts (MI:0915) with NKbeta 1 (uniprotkb:P08251) by pull down (MI:0416)MINT-7260570: NKbeta1 (uniprotkb:P08251) and Slo1 (uniprotkb:Q8AYS8) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7260414: Slo1 (uniprotkb:Q08460) physically interacts (MI:0915) with NKbeta1 (uniprotkb:P08251) by two hybrid (MI:0018)  相似文献   

16.
Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin. For the first time, we directly observed functional SH protein using electron microscopy, which revealed SH forms multimeric ring-like objects with a prominent central stained region. Based on current and existing functional data, we propose this region represents the channel that mediates membrane permeability.

Structured summary

MINT-7890792, MINT-7890805: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by chromatography technology (MI:0091)MINT-7890784, MINT-7890776: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by electron microscopy (MI:0040)  相似文献   

17.
Sergio P. Acebrón 《FEBS letters》2009,583(18):2991-2996
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (Kd = 5-10 μM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.

Structured summary

MINT-7258957: G6PDH (uniprotkb:P0AC53) and G6PDH (uniprotkb:P0AC53) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258951: alpha glucosidase (uniprotkb:P21517) and alpha glucosidase (uniprotkb:P21517) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258903: AdhE (uniprotkb:P0A9Q7) and AdhE (uniprotkb:P0A9Q7) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258900: G6PDH (uniprotkb:P0AC53) and G6PDH (uniprotkb:P0AC53) bind (MI:0407) by biophysical (MI:0013)MINT-7258974: DnaK (uniprotkb:P0A6Y8), ClpB (uniprotkb:P63284), DnaJ (uniprotkb:P08622) and G6PDH (uniprotkb:P0AC53) physically interact (MI:0914) by cosedimentation (MI:0027)  相似文献   

18.
Macropinocytosis is regulated by Abl kinase via an unknown mechanism. We previously demonstrated that Abl kinase activity is, itself, regulated by Abi1 subsequent to Abl kinase phosphorylation of Abi1 tyrosine 213 (pY213) [1]. Here we show that blocking phosphorylation of Y213 abrogated the ability of Abl to regulate macropinocytosis, implicating Abi1 pY213 as a key regulator of macropinocytosis. Results from screening the human SH2 domain library and mapping the interaction site between Abi1 and the p85 regulatory domain of PI-3 kinase, coupled with data from cells transfected with loss-of-function p85 mutants, support the hypothesis that macropinocytosis is regulated by interactions between Abi1 pY213 and the C-terminal SH2 domain of p85—thereby linking Abl kinase signaling to p85-dependent regulation of macropinocytosis.

Structured summary

MINT-7908602: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHIP2 (uniprotkb:O15357) by array technology (MI:0008)MINT-7908362: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Emt (uniprotkb:Q08881) by array technology (MI:0008)MINT-7908235: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lyn (uniprotkb:P07948) by array technology (MI:0008)MINT-7908075: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to Fgr (uniprotkb:P09769) by array technology (MI:0008)MINT-7908330, MINT-7908522: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav1 (uniprotkb:P15498) by array technology (MI:0008)MINT-7907962: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fyn (uniprotkb:P06241) by array technology (MI:0008)MINT-7908203: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P12931) by array technology (MI:0008)MINT-7908570: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHP-2 (uniprotkb:P35235) by array technology (MI:0008)MINT-7908187, MINT-7908586: Abi1(uniprotkb:Q8IZP0) binds (MI:0407) to Gap (uniprotkb:P20936) by array technology (MI:0008)MINT-7907981, MINT-7907995: Abi1 (uniprotkb:Q8IZP0) physically interacts (MI:0915) with p85a (uniprotkb:P26450) by anti tag coimmunoprecipitation (MI:0007)MINT-7908251: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P19174) by array technology (MI:0008)MINT-7908346: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Grb2 (uniprotkb:P62993) by array technology (MI:0008)MINT-7907945: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Abl (uniprotkb:P00519) by array technology (MI:0008)MINT-7908474: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to p85b (uniprotkb:O00459) by array technology (MI:0008)MINT-7908107: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Hck (uniprotkb:P08631) by array technology (MI:0008)MINT-7908011: p85a (uniprotkb:P26450) physically interacts (MI:0915) with Abi1 (uniprotkb:Q8IZP0) by pull down (MI:0096)MINT-7908155: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to FynT (uniprotkb:P06241-2) by array technology (MI:0008)MINT-7908283, MINT-7908490: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p55g (uniprotkb:Q92569) by array technology (MI:0008)MINT-7907929, MINT-7907815, MINT-7907832, MINT-7907865, MINT-7907897, MINT-7907913, MINT-7907881, MINT-7907848: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p85a (uniprotkb:P27986) by array technology (MI:0008)MINT-7908059: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Frk (uniprotkb:P42685) by array technology (MI:0008)MINT-7908378: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblC (uniprotkb:Q9ULV8) by array technology (MI:0008)MINT-7908618: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblA (uniprotkb:B5MC15) by array technology (MI:0008)MINT-7908139, MINT-7908538: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Nap4 (uniprotkb:O14512) by array technology (MI:0008)MINT-7908426: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblB (uniprotkb:Q13191) by array technology (MI:0008)MINT-7908506: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Crk (uniprotkb:P46108) by array technology (MI:0008)MINT-7908554: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mAbl (uniprotkb:P00520) by array technology (MI:0008)MINT-7908043, MINT-7908394: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav2 (uniprotkb:P52735) by array technology (MI:0008)MINT-7908458: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mSck/ShcB (uniprotkb:Q8BMC3) by array technology (MI:0008)MINT-7908091: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Yes (uniprotkb:P07947) by array technology (MI:0008)MINT-7908219: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P00523) by array technology (MI:0008)MINT-7908123: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fer (uniprotkb:P16591) by array technology (MI:0008)MINT-7908410: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CrkL (uniprotkb:P46109) by array technology (MI:0008)MINT-7908314, MINT-7908442: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Arg (uniprotkb:P42684) by array technology (MI:0008)MINT-7908299: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P10686) by array technology (MI:0008)MINT-7908171: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fes (uniprotkb:P07332) by array technology (MI:0008)MINT-7908027: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lck (uniprotkb:P06239) by array technology (MI:0008)  相似文献   

19.
Calmodulin(CaM)-regulated protein phosphorylation forms an important component of Ca2+ signaling in animals but is less understood in plants. We have identified a CaM-binding receptor-like kinase from soybean nodules, GmCaMK1, a homolog of Arabidopsis CRLK1. We delineated the CaM-binding domain (CaMBD) of GmCaMK1 to a 24-residue region near the C-terminus, which overlaps with the kinase domain. We have demonstrated that GmCaMK1 binds CaM with high affinity in a Ca2+-dependent manner. We showed that GmCaMK1 is expressed broadly across tissues and is enriched in roots and developing nodules. Finally, we examined the CaMBDs of the five-member GmCaMK family in soybean, and orthologs present across taxa.

Structured summary

MINT-8051564: AtCRLK2 (uniprotkb:Q9LFV3) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051416: GmCaMK3 (uniprotkb:C6ZRS6) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051258: CaM (uniprotkb:P62199) and GmCaMK1 (genbank_protein_gi:223452504) bind (MI:0407) by isothermal titration calorimetry (MI:0065)MINT-8051400: GmCaMK2 (uniprotkb: C6ZRY5) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051242, MINT-8051295, MINT-8051313, MINT-8051327, MINT-8051341, MINT-8051355: GmCaMK1 (genbank_protein_gi:223452504) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051467: GmCaMK4 (uniprotkb: C6TIQ0) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051276: CaM (uniprotkb:P62199) and GmCaMK1 (genbank_protein_gi:223452504) bind (MI:0407) by comigration in non denaturing gel electrophoresis (MI:0404)MINT-8051374: CaM (uniprotkb:P62199) and GmCaMK1 (genbank_protein_gi:223452504) bind (MI:0407) by mass spectrometry studies of complexes (MI:0069)  相似文献   

20.
The presence of heterotrimeric G-proteins at epithelial tight junctions suggests that these cellular junctions are regulated by so far unknown G-protein coupled receptors. We identify here an interaction between the human somatostatin receptor 3 (hSSTR3) and the multiple PDZ protein MUPP1. MUPP1 is a tight junction scaffold protein in epithelial cells, and as a result of the interaction with MUPP1 the hSSTR3 is targeted to tight junctions. Interaction with MUPP1 enables the receptor to regulate transepithelial permeability in a pertussis toxin sensitive manner, suggesting that hSSTR3 can activate G-proteins locally at tight junctions.

Structured summary:

MINT-6800756, MINT-6800770: MUPP1 (uniprotkb:O75970) and hSSTR3 (uniprotkb:P32745) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-6800587:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O55164) by pull down (MI:0096)MINT-6800562:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O75970) by two hybrid (MI:0018)MINT-6800622:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with PIST (uniprotkb: Q9HD26), Hsp70 (uniprotkb:P08107), Maguk p55 (uniprotkb: Q8N3R9), MAGI3 (uniprotkb:Q5TCQ9), ZO-2 (uniprotkb:Q9UDY2), ZO-1 (uniprotkb:Q07157) and MUPP1 (uniprotkb:O55164) by pull down (MI:0096)MINT-6800607, MINT-6801122:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O75970) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号