首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
We isolated a soybean saponin hydrolase from Neocosmospora vasinfecta var. vasinfecta PF1225, a filamentous fungus that can degrade soybean saponin and generate soyasapogenol B. This enzyme was found to be a monomer with a molecular mass of about 77 kDa and a glycoprotein. Nucleotide sequence analysis of the corresponding gene (sdn1) indicated that this enzyme consisted of 612 amino acids and had a molecular mass of 65,724 Da, in close agreement with that of the apoenzyme after the removal of carbohydrates. The sdn1 gene was successfully expressed in Trichoderma viride under the control of the cellobiohydrolase I gene promoter. The molecular mass of the recombinant enzyme, about 69 kDa, was smaller than that of the native enzyme due to fewer carbohydrate modifications. Examination of the degradation products obtained by treatment of soyasaponin I with the recombinant enzyme showed that the enzyme hydrolyzed soyasaponin I to soyasapogenol B and triose [alpha-L-rhamnopyranosyl (1-->2)-beta-D-galactopyranosyl (1-->2)-D-glucuronopyranoside]. Also, when soyasaponin II and soyasaponin V, which are different from soyasaponin I only in constituent saccharides, were treated with the enzyme, the ratio of the reaction velocities for soyasaponin I, soyasaponin II, and soyasaponin V was 2,680:886:1. These results indicate that this enzyme recognizes the fine structure of the carbohydrate moiety of soyasaponin in its catalytic reaction. The amino acid sequence of this enzyme predicted from the DNA sequence shows no clear homology with those of any of the enzymes involved in the hydrolysis of carbohydrates.  相似文献   

2.
Exogenously applied methyl jasmonate (MeJA) stimulated soyasaponin biosynthesis in cultured cells of Glycyrrhiza glabra (common licorice). mRNA level and enzyme activity of beta-amyrin synthase (bAS), an oxidosqualene cyclase (OSC) situated at the branching point for oleanane-type triterpene saponin biosynthesis, were up-regulated by MeJA, whereas those of cycloartenol synthase, an OSC involved in sterol biosynthesis, were relatively constant. Two mRNAs of squalene synthase (SQS), an enzyme common to both triterpene and sterol biosyntheses, were also up-regulated by MeJA. In addition, enzyme activity of UDP-glucuronic acid: soyasapogenol B glucuronosyltransferase, an enzyme situated at a later step of soyasaponin biosynthesis, was also up-regulated by MeJA. Accumulations of bAS and two SQS mRNAs were not transient but lasted for 7 d after exposure to MeJA, resulting in the high-level accumulation (more than 2% of dry weight cells) of soyasaponins in cultured licorice cells. In contrast, bAS and SQS mRNAs were coordinately down-regulated by yeast extract, and mRNA accumulation of polyketide reductase, an enzyme involved in 5-deoxyflavonoid biosynthesis in cultured licorice cells, was induced transiently by yeast extract and MeJA, respectively.  相似文献   

3.
Seeds of 57 species of the genus Trifolium have been studied for the occurrence and concentration of soyasapogenol B glycosides and flavonoids. It was shown that all tested species contained soyasaponin I and in some species astragaloside VIII and/or 22-O-glucoside and 22-O-diglucoside of soyasaponin I were also present. Total concentration of saponins ranged from trace amounts up to 10 mg/g(DM). It was suggested that soyasapogenol B glycosides could be recognized as chemotaxonomic character of Fabaceae family. All but three tested species contained flavonoids. The majority of species contained quercetin as a sole flavonoid or in the mixture with a number of unidentified flavonoid components. Concentration of quercetine in some species was at the level of about 3 mg/g(DM). This high quercetin concentration and soyasaponin occurrence makes the seeds of some Trifolium species a potential source of health beneficial phytochemicals, to be used in human nutrition.  相似文献   

4.
Abstract

Soyasapogenols, aglycones of soyasaponins, can be produced from crude soybean saponin extract by acid or enzymatic hydrolysis. Soyasapogenol B is known to have hepatoprotective, antimutagenic, antivirus, and anti-inflammatory activities. Hydrolysis of soyabean saponin extract for 72 h with 2 M HCl in methanol gave three soyasapogenols, namely: soyasapogenol D, soyasapogenol B1 and soyasapogenol A. However, the microbial hydrolysis of soybean saponin extract by Aspergillus terreus led to isolation of soyasapogenol B as a major product. A systematic evaluation of the effect of key operational parameters on the microbial transformation was performed. Maximum production of soyasapogenol B (about 152.3 mg/50ml) was observed using 1.5% (w/v) soybean saponin and 1.5% (w/v) glucose, 32°C after 72 h at pH 7 using phosphate buffer. Under these optimal conditions, the cells’ bioconversion efficiency increased from 20.5 to 85.3%. The isolation of soyasapogenols was performed using chromatographic methods and their structures identified on the basis of spectroscopic tools.  相似文献   

5.
Triterpene saponins are a group of bioactive compounds abundant in the genus Medicago , and have been studied extensively for their biological and pharmacological properties. In this article, we evaluated the effects of the ectopic expression of AsOXA1 cDNA from Aster sedifolius on the production of triterpene saponins in barrel medic ( Medicago truncatula Gaertn.). AsOXA1 cDNA encodes β-amyrin synthase, a key enzyme involved in triterpene saponin biosynthesis. One of the four transgenic lines expressing AsOXA1 accumulated significantly larger amounts of some triterpenic compounds in leaf and root than did control plants. In particular, the leaf exhibited significantly higher levels of bayogenin, medicagenic acid and zanhic acid. The amounts of medicagenic acid and zanhic acid, which represent the core of the M. truncatula leaf saponins, were 1.7 and 2.1 times higher, respectively, than the amounts extracted from the control line. In root, the production of bayogenin, hederagenin, soyasapogenol E and 2β-hydroxyoleanolic acid was increased significantly. The increase in the total amounts of triterpenic compounds observed in the leaves of transgenic lines correlated with the AsOXA1 expression level. Interestingly, the plants expressing AsOXA1 showed, under different growth conditions, improved nodulation when compared with the control line. Nodulation enhancement was also accompanied by a significant change in the soyasapogenol B content. Our results indicate that the ectopic expression of AsOXA1 in barrel medic leads to a greater accumulation of triterpene saponins and enhanced root nodulation.  相似文献   

6.
Soyasapogenol is a soyasaponin aglycone, which has been suggested to exert a more potent function than the glycoside form. In this study, the effect of soyasapogenol A and B on cultured adipocyte cell function was investigated using mouse 3T3-L1 adipocyte cells. 3T3-L1 cells were treated with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine for differentiation to adipocytes, and the cells were then cultured in the presence of soyasapogenol A or B (6.25 or 12.5 µM). The media were harvested and refreshed every 2 d. After a 10 d culture, the cells were harvested and the triglyceride content of the cells was determined. The triglyceride content of soyasapogenol B-treated cells was significantly lower than those of vehicle-treated cells. Glycerol and free fatty acid levels in the soyasapogenol-treated cell media were higher than those in vehicle cells. However, there was no difference in the level of adipose triglyceride lipase among soyasapogenol A-, soyasapogenol B-, and vehicle-treated cells. The secreted adiponectin and resistin levels of soyasapogenol-treated cell media were also different compared with those of vehicle-treated cells. Especially, the secreted resistin level in soyasapogenol B-treated cell media was obviously reduced compared with that of vehicle-treated cells. Taken together, these results suggest that soyasapogenol B exerted an anti-obesity and anti-diabetic effect on adipocytes by lowering the cellular triglyceride level by accelerating triglyceride lipolysis with reduced resistin secretion.  相似文献   

7.
8.
《Phytochemistry》1986,25(10):2291-2298
Host recognition by the angiosperm root parasite Agalinis purpurea occurs through the development of haustoria, organs specialized for the attachment and penetration of host roots. Axenic cultures of Agalinis do not develop haustoria, but low molecular weight compounds produced by host plants induce haustoria development. Structure-activity studies have shown that highest levels of haustoria induction are afforded by flavonoids bearing specifically substituted methoxyphenol functionality. This paper examines Lespedeza sericea to determine the extent of this structure-activity relationship among hosts of Agalinis. A pentacyclic triterpene has been isolated from Lespedeza roots as a haustoria inducer, and extensive NMR and mass spectral experiments led to its characterization as soyasapogenol B (3β,22β,24-trihydroxy-olean-12-ene). The activity of soyasapogenol B is lower than the phenolic inducers, and modification of hydroxyl substitutents on soyasapogenol B abolishes activity. This haustoria inducer appears to be preferentially secreted from the roots of Lespedeza, but not in quantities sufficient to account for all haustoria inducing activity exhibited by the crude root exudate.  相似文献   

9.
We purified saponin hydrolases from Aspergillus oryzae PF1224 and Eupenicillium brefeldianum PF1226. It was confirmed that the enzymes from A. oryzae PF1224 (Sda1) and E. brefeldianum PF1226 (Sde1) are glycoproteins with molecular masses of 82 and 90 kDa respectively. The deduced amino acid sequences of each enzyme from the cloned genes (sda1 or sde1) showed approximately 50% homology with that of the saponin hydrolase Sdn1 from Neocosmospora vasinfecta var. vasinfecta PF1225 (DDBJ accession no. AB110615). When sda1 and sde1 were expressed in the host Trichoderma viride under the control of the cellobiohydrolase I gene promoter, recombinant proteins were secreted with molecular masses of 77 and 67 kDa respectively. These recombinant enzymes hydrolyzed soyasaponin I to soyasapogenol B and triose, and its substrate specificities for glycosides were similar to that of Sdn1, but the specific activities of these enzymes were lower than that of Sdn1.  相似文献   

10.
Although certain saponins in soybean seeds have been reported to have health benefits, group A acetyl saponins cause undesirable bitter and astringent tastes in soy products. Therefore, reduction or elimination of group A saponins is an important target for soybean breeders. A wide survey of cultivated and wild soybean germplasm identified a mutant line that lacked group A saponins. The absence of soyasapogenol A, a group A saponin aglycone, is controlled by a single recessive allele, sg-5 that mapped genetically near the SSR marker, Satt117, on soybean chromosome 15 (linkage group E). The locus is epistatic to Sg-1, which controls the terminal sugar variation on the C-22 sugar chain of soyasapogenol A, and allelic differences at this locus lead to changes in the amount of DDMP saponins and their derivatives group B and E products. These findings provide a new insight into the biosynthetic pathway of soybean saponins, and identify a genetic approach that can be applied to improve the quality of foods produced from soybean.  相似文献   

11.
The anti-inflammatory properties of soyasaponins (especially soyasaponins with different chemical structures) have scarcely been investigated. We investigated the inhibitory effects of five structural types of soyasaponins (soyasaponin A1, A2, I and soyasapogenol A, B) on the induction of nitric oxide (NO) and inducible NO synthase (iNOS) in murine RAW 264.7 cells activated with lipopolysaccharide (LPS). Soyasaponin A1, A2 and I (25-200 μg/mL) dose-dependently inhibited the production of NO and tumor necrosis factor α (TNF-α) in LPS-activated macrophages, whereas soyasapogenol A and B did not. Furthermore, soyasaponin A1, A2 and I suppressed the iNOS enzyme activity and down-regulated the iNOS mRNA expression both in a dose-dependent manner. The reporter gene assay revealed that soyasaponin A1, A2 and I decreased LPS-induced nuclear factor kappa B (NF-κB) activity. Soyasaponin A1, A2 and I exhibit anti-inflammatory properties by suppressing NO production in LPS-stimulated RAW 264.7 cells through attenuation of NF-κB-mediated iNOS expression. It is proposed that the sugar chains present in the structures of soyasaponins are important for their anti-inflammatory activities. These results have important implication for using selected soyasaponins towards the development of effective chemopreventive and anti-inflammatory agents.  相似文献   

12.
Triterpenoid saponins from Medicago hispida.   总被引:2,自引:0,他引:2  
S B Mahato 《Phytochemistry》1991,30(10):3389-3393
Soyasaponin III has been characterized and the structure of a new triterpenoid saponin, hispidacin, has been elucidated as soyasapogenol B-3-O-alpha-L-rhamnopyranopyranosyl(1----2)- beta-D-glucopyranosyl(1----2)-beta-D-glucuronopyranoside by a combination of fast-atom bombardment mass spectrometry, 13C NMR spectroscopy, and some chemical transformations. Mechanism of transformation of soyasapogenol B to soyasapogenols D, and F has also been rationalized.  相似文献   

13.
A new glycosylated triterpene 1 was identified as 3-O-[β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl]-11-methoxy-16-hydroxy-17-acetoxy hederagenin from an ethanolic extract of seeds of Nigella sativa Linn. Identification of the naturally acetylated saponin was based on chemical and spectroscopic analyses including FABMS, 1H, 13C, and 2D NMR and DEPT. The saponin was a penta hydroxy pentacyclic triterpene, in which one hydroxyl group was acetylated and other one was methylated naturally.  相似文献   

14.
Panax notoginseng (Burk) F. H. Chen, an economically significant medicinal plant with hemostatic and health tonic activities, has been used in Traditional Chinese Medicine (TCM) for more than 3000 years. Triterpene saponins are responsible for most of the pharmacological activities of P. notoginseng. Here, we cloned five cDNA sequences encoding the key enzymes involved in triterpene saponin biosynthesis, namely, PnFPS, PnSS, PnSE1, PnSE2, and PnDS, and analyzed the conserved domains and phylogenetics of their corresponding proteins. Their organ-specific expression patterns in four-year-old P. notoginseng were detected by real-time PCR, showing that they were all most highly expressed in flowers. In addition, four of the genes, excluding PnSE2, were upregulated in leaves following stimulation with methyl jasmonate. This study is the first comprehensive analysis of the expression patterns of pivotal genes for triterpene saponin biosynthesis in P. notoginseng and provides a basis to further elucidate the molecular mechanism for the biosynthesis of these medically important compounds.  相似文献   

15.
16.
《Phytomedicine》2014,21(13):1759-1766
To improve the immune efficacy of protein subunit vaccines, novel adjuvants are needed to elicit a suitable protective immune response and to promote long term immunologic memory. In this work, soyasaponin Ab, a major constituent among group A soyasaponins in soybeans was purified and prepared from soy hypocotyls. The immunomodulatory effects of soyasaponin Ab both in vitro and in vivo were investigated, and its pro-immunomodulatory molecular mechanism was also studied. For in vitro assays, with mouse macrophage cell line RAW264.7 as the studying model, both cytotoxicity and immune stimulatory activity were investigated to evaluate the potential of soyasaponin Ab as the vaccine adjuvant. The results indicated that soyasaponin Ab could be significantly safer than Quillaja saponins (QS). Soyasaponin Ab showed no toxicities over the tested concentration ranges compared to QS. Soyasaponin Ab was proved able to promote releases of inflammatory cytokines like TNFα and IL-1β in a dose-dependent manner. Furthermore, NF-κB signalling was also activated by soyasaponin Ab effectively. In addition, with TLR4 gene expression of RAW264.7 cell inhibited by RNA interference, immune stimulatory effects by soyasaponin Ab dropped down significantly. On the other hand, the in vivo experiment results showed that anti-ovalbumin (OVA) IgG, IgG1, IgG2a, IgG2b were significantly enhanced by the soyasaponin Ab and QS groups (p < 0.05 or p < 0.01). The results suggested that compared to QS, soyasaponin Ab may represent a viable candidate for effective vaccine adjuvant. TLR4 receptor dependent pathway may be involved in immune stimulatory effects of soyasaponin Ab.  相似文献   

17.
18.
The saponin fraction from the ethanolic extracts of the root of Ilex pubescens Hook. et Arn. (Ilexaceae) was found to exhibit potent anti-inflammatory effects on carrageenan-induced paw edema in rats. Two novel triterpene saponins, pubescenosides C and D (1 and 2, resp.), together with five known saponins were isolated from this saponin fraction. The structures of 1 and 2 were elucidated as (20beta)-3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa-12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, and (20beta)-3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa- 12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, respectively, on the basis of chemical and spectroscopic data. Five known saponins isolated from the saponin fraction were identified as ilexsaponin B(1), B(2), B(3), A(1), and chikusetsusaponin IV(a).  相似文献   

19.
Three saponins from Oxytropis species.   总被引:2,自引:0,他引:2  
R Q Sun  Z J Jia  D L Cheng 《Phytochemistry》1991,30(8):2707-2709
Three flavonoids and three saponins have been isolated from Oxytropis species. Their structures were determined as isorhamnetin-3-O-beta-D-glucoside, rhamnetin-3-O-beta-D-galactoside, apigenin, 3-O-[alpha-L-rhamnopyranosyl (1----2)-beta-D-glucopyranosyl(1----4)-beta-D-glucuronopyranosyl]+ ++soyasapogenol B, 3-O-[beta-D-glucopyranosyl(1----2)-beta-D-glucuronopyranosyl] azukisapogenol and a new saponin 3-O-[beta-D-glucopyranosyl(1----2)-beta-D-glucopyranosyl]-25-O-alpha-L- rhamnopyranosyl-(20S,24S)-3 beta,16 beta, 20,24,25-pentahydroxy-9,19-cycloanostane.  相似文献   

20.
The major extractable components of two species identified as having high oil or polyphenol contents were characterized in detail.Asclepias linaria, a desert milkweed, contains 30.3% extractable material on a dry-weight basis, andIlex verticillata contains 41.5% extractable material on a dry-weight basis. Important components inA. linaria oil fractions are triterpene alcohols and esters, wax, and natural rubber; fatty acid triglycerides were nearly absent.Ilex verticillata oil fractions were predominantly triglycerides with some triterpene fatty acid esters. The more polar polyphenol fraction contained sugars and sugar esters of fatty acids and triterpene acids. The polyphenol fraction from these plants is better described as a saponin fraction. Because the crude saponin fraction represents 10.7% of the dry weight of A. linaria and 18.9% of the dry weight ofI. verticillata and because the saponin fractions showed good emulsifying properties, the refined extract of these plants might be used as a biodegradable surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号