首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Ralstonia solanacearum lectin (RSL), that might be involved in phytopathogenicity, has been defined as lFuc?Man specific. However, the effects of polyvalency of glycotopes and mammalian structural units on binding have not been established. In this study, recognition factors of RSL were comprehensively examined with natural multivalent glycotopes and monomeric ligands using enzyme linked lectin-sorbent and inhibition assays. Among the glycans tested, RSL reacted strongly with multivalent blood group Ah (GalNAcα1–3[Fucα1–2]Gal) and H (Fucα1–2Gal) active glycotopes, followed by Bh (Galα1–3[Fucα1–2]Gal), Lea (Galβ1–3[Fucα1–4]GlcNAc) and Leb (Fucα1–2Galβ1–3[Fucα1–4]GlcNAc) active glycotopes. But weak or negligible binding was observed for blood group precursors having Galβ1–3/4GlcNAcβ1- (Iβ/IIβ) residues or Galβ1–3GalNAcα1- (Tα), GalNAcα1-Ser/Thr (Tn) bearing glycoproteins. These results indicate that the density and degree of exposure of multivalent ligands of α1–2 linked lFuc to Gal at the non-reducing end is the most critical factor for binding. An inhibition study with monomeric ligands revealed that the combining site of RSL should be of a groove type to fit trisaccharide binding with highest complementarity to blood group H trisaccharide (HL; Fucα1–2Galβ1–4Glc). The outstandingly broad RSL saccharide-binding profile might be related to the unusually wide spectrum of plants that suffer from R. solanacearum pathogenicity and provide ideas for protective antiadhesion strategies.  相似文献   

5.
The resistance or susceptibility of Biomphalaria glabrata strains to strains of Schistosoma mansoni, the human blood fluke, are evidenced by the responses of snail hemocytes to sporocysts of the schistosome, both in vivo and in vitro. It is now reported that living sporocysts of the PR1 strain of S. mansoni agglutinate in the plasma of all tested strains of B. glabrata, in contrast to fixed sporocysts which agglutinate only in plasma from resistant snail strains. The agglutinating activity in resistant plasmas is not divalent cation dependent, and was not inhibited by the 26 carbohydrates and four amino acids tested. In addition, the observation that gelatinous deposits develop on transforming miracidia-sporocysts in B. glabrata plasmas is also reported. Both the agglutination and gel-formation phenomena may facilitate recognition of, and attacks on, sporocysts, thereby contributing to susceptibility and resistance in this host-parasite system.  相似文献   

6.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(α1-3)Gal(β1-4)Glc (α3′-galactosyllactose), Fuc(α1-2)Gal(β1-4)Glc (2′-fucosyllactose), Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide), GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (A-tetrasaccharide), Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc; the saccharides from another animal: α3′-galactosyllactose, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]Glc, A-tetrasaccharide, GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc (A-pentasaccharide), Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)[Fuc(α1-3)]Glc (difucosylheptasaccharide) and Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had α-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

7.
During infection with the blood fluke Schistosoma mansoni, glycan motifs present on glycoproteins of the parasite’s eggs mediate immunomodulatory effects on the host. The recognition of these glycan motifs is primarily mediated by C-type lectin receptors on dendritic cells and other cells of the immune system. However, it is not yet known which individual glycoproteins interact with the different C-type lectin receptors, and which structural components are involved. Here we investigated the structural basis of the binding of two abundant egg antigens, kappa-5 and IPSE/α1, by the C-type lectin receptor dendritic cell-specific ICAM3-grabbing non-integrin, macrophage galactose-type lectin and mannose receptor. In the natural soluble form, the secretory egg glycoprotein IPSE/α1 interacts with dendritic cells mainly via mannose receptors. Surprisingly, in plate-based assays mannose receptors preferentially bound to mannose conjugates, while in cell-based assays, IPSE/α1 is bound via the fucosylated Galβ1-4(Fucα1-3)GlcNAc (LeX) motif on diantennary N-glycans. Kappa-5, in contrast, is bound by dendritic cells via all three C-type lectin receptors studied and for a minor part also via other, non-C-type lectin receptors. Kappa-5 interacts with macrophage galactose-type lectins via the GalNAcβ1-4GlcNAc antenna present on its triantennary N-glycans, as well as the GalNAcβ1-4(Fucα1-3)GlcNAc antennae present on a minor N-glycan subset. Dendritic cell-specific ICAM3-grabbing non-integrin binding of kappa-5 was mediated via the GalNAcβ1-4(Fucα1-3)GlcNAc antennae, whereas binding of mannose receptors may involve either GalNAcβ1-4(Fucα1-3)GlcNAc antennae or the fucosylated and xylosylated chitobiose core. This study provides a molecular and structural basis for future studies of the interaction between C-type lectin receptors and other soluble egg antigen glycoproteins and their effects on the host immune response.  相似文献   

8.
Enterotoxigenic Escherichia coli and Vibrio cholerae are well known causative agents of severe diarrheal diseases. Both pathogens produce AB5 toxins, with one enzymatically active A-subunit and a pentamer of receptor-binding B-subunits. The primary receptor for both B-subunits is the GM1 ganglioside (Galβ3GalNAcβ4(NeuAcα3)Galβ4GlcβCer), but the B-subunits from porcine isolates of E. coli also bind neolacto-(Galβ4GlcNAcβ-)terminated glycoconjugates and the B-subunits from human isolates of E. coli (hLTB) have affinity for blood group A type 2-(GalNAcα3(Fucα2)Galβ4GlcNAcβ-)terminated glycoconjugates.  相似文献   

9.
10.
For parasites that require multiple hosts to complete their development, the interaction with the intermediate host may have an impact on parasite transmission and development in the definitive host. The human parasite Schistosoma mansoni needs two different hosts to complete its life cycle: the freshwater snail Biomphalaria glabrata (in South America) as intermediate host and a human or rodents as final host. To investigate the influence of the host environment on life history traits in the absence of selection, we performed experimental infections of two B. glabrata strains of different geographic origin with the same clonal population of S. mansoni. One B. glabrata strain is the sympatric host and the other one the allopatric host. We measured prevalence in the snail, the cercarial infectivity, sex-ratio, immunopathology in the final host and microsatellite frequencies of individual larvae in three successive generations.  相似文献   

11.
Evaluation of the cytotoxicity of an ethanolic root extract of Sideroxylonfoetidissimum subsp. gaumeri (Sapotaceae) revealed activity against the murine macrophage-like cell line RAW 264.7. Systematic bioassay-guided fractionation of this extract gave an active saponin-containing fraction from which four saponins were isolated. Use of 1D (1H, 13C, DEPT135) and 2D (COSY, TOCSY, HSQC, and HMBC) NMR, mass spectrometry and sugar analysis gave their structures as 3-O-(β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, 3-O-β-d-glucopyranosyl-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, 3-O-(β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, and the known compound, 3-O-β-d-glucopyranosyl-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-protobassic acid. Two further saponins were obtained from the same fraction, but as a 5:4 mixture comprising 3-O-(β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid and 3-O-(β-d-apiofuranosyl-(1 → 3)-β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, respectively. This showed greater cytotoxicity (IC50 = 11.9 ± 1.5 μg/ml) towards RAW 264.7 cells than the original extract (IC50 = 39.5 ± 4.1 μg/ml), and the saponin-containing fraction derived from it (IC50 = 33.7 ± 6.2 μg/ml).  相似文献   

12.
Four labdanes with a 8α,15-epoxy ring (8α,15-epoxylabdan-16β-oic acid; 8α,15-epoxy-16-norlabdan-13-one; 8α,15-epoxy-16-norlabdane; and 16-acetoxy-8α,15-epoxylabdane) and the known compound ambreinolide were isolated from the hexane extract of the aerial parts of the grass Eragrostis viscosa. The structures of all compounds were established based on spectroscopic data and the X-ray analysis of 8α,15-epoxy-16-norlabdan-13-one. The hexane extract presented moderate activity against the snail Biomphalaria glabrata. 8α,15-Epoxylabdan-16β-oic acid showed no mutagenic activity for doses up to 1000 μg/plate and no significant clastogenic activity for doses up to 100 μg/ml.  相似文献   

13.
Lambs vaccinated with Haemonchus contortus excretory/secretory (ES) glycoproteins in combination with the adjuvant Alhydrogel are protected against H. contortus challenge infection. Using glycan micro-array analysis we showed that serum from such vaccinated lambs contains IgG antibodies that recognise the glycan antigen Galα1-3GalNAc-R and GalNAcβ1-4(Fucα1-3)GlcNAc-R. Our studies revealed that H. contortus glycoproteins contain Galα1-3Gal-R as well as significant levels of Galα1-3GalNAc-R, which has not been previously reported. Extracts from H. contortus adult worms contain a galactosyltransferase acting on glycan substrates with a terminal GalNAc, indicating that the worms possess the enzymatic potential to synthesise terminal Gal-GalNAc moieties. These data illustrate that glycan micro-arrays constitute a promising technology for fast and specific analysis of serum anti-glycan antibodies in vaccination studies. In addition, this approach facilitates the discovery of novel, antigenic parasite glycan antigens that may have potential for developing glycoconjugate vaccines or utilization in diagnostics.  相似文献   

14.
From the roots of Gundelia tournefortii seven saponins have been isolated mainly by DCCC. The main saponins (A and B) were characterized, mainly by 13C and 1H NMR spectroscopy, as oleanolic acid 3-O-(2-[α-l-arabinopyranosyl(1 → 3) -β-d-gentiotriosyl(1 → 6) -β-d-glucopyranosyl]gb-d-xylopyranoside) (saponin A) and oleanolic acid 3-O-(2-[α-l-arabinopyranosyl] (1 → 3)-β-d-gentiobiosyl (1 → 6)-β-d-glucopyranosyl β-d-xylopyranoside) (saponin B). The other saponins are also derived from oleanolic acid and contain more sugar units. The saponin mixture and the saponins A and B possess strong molluscicidal activity against the schistosomiasis transmitting snail Biomphalaria glabrata.  相似文献   

15.
Five cycloartane-type triterpene glycosides were isolated from the methanol extract of the roots of Astragalus amblolepis Fischer along with one known saponin, 3-O-β-D-xylopyranosyl-16-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane. Structures of the compounds were established as 3-O-β-D-xylopyranosyl-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-[β-D-glucuronopyranosyl-(1 → 2)-β-D-xylopyranosyl]-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-β-D-xylopyranosyl-24,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,24-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane by using 1D and 2D-NMR techniques and mass spectrometry. To the best of our knowledge, the glucuronic acid moiety in cycloartanes is reported for the first time.  相似文献   

16.
17.
Thirteen steroidal saponins were isolated from the leaves of Beaucarnea recurvata Lem. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Six of them were identified as: 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25R)-furosta-5,20(22)-diene-23-one-1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 4)-6-O-acetyl-β-d-glucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, and 24-O-β-d-glucopyranosyl (25R)-spirost-5-ene-1β,3β,24-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside. The chemotaxonomic classification of B. recurvata in the family Ruscaceae was discussed.  相似文献   

18.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

19.
Sporocysts of Schistosoma mansoni (PR1 strain) survive and grow in Biomphalaria glabrata PR albino strain snails, whereas they are encapsulated and die in B. glabrata 10R2 strain snails. These processes also occur in an in vitro system in which the only living cells are those of sporocysts and snail hemolymph. Hemocytes of the susceptible snail are normally not effective in damaging sporocysts. However, when the encounter occurred in the presence of cell-free plasma from resistant snails, previously impotent hemocytes severely damaged sporocysts in 24 hr. The cytotoxic capacity of resistant strain hemocytes was not altered by plasma from susceptible snails. Furthermore, it was retained even when plasma was replaced by culture medium free of snail components. The nature of the plasma factor(s) which facilitated damage by otherwise impotent hemocytes is discussed, and evidence is evaluated for the hypothesis that snail resistance is dependent upon the specificity of cytophilic factors present both in the plasma and on the hemocyte plasma membranes.  相似文献   

20.
Sullivan J. T., Richards C. S., Lie K. J. and Heyneman D. 1981. Schistosoma mansoni, NIH-Sm-PR-2 strain, in non-susceptible Biomphalaria glabrata: Protection by Echinostoma paraensei. International journal for Parasitology11:481–484. Among seven inbred genetic stocks of Biomphalaria glabrata that are non-susceptible for the NIH-Sm-PR-2 strain of Schistosoma mansoni (PR-2), five stocks revert to nearly complete susceptibility when first infected with Echinostoma paraensei. These include both stocks in which PR-2 sporocysts are normally destroyed within 3–7 days, and stocks in which sporocysts often survive undeveloped for at least 3 weeks. Hence, these five stocks are resistant to but physiologically suitable for the development of PR-2. Of the two remaining stocks, one remains partly non-susceptible to PR-2, since less than 50 % of echinostome-infected snails revert to susceptibility, while the other stock remains completely non-susceptible to PR-2 following echinostome infection, due perhaps to a high level of residual resistance and/or unsuitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号