首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.  相似文献   

2.
Fibroblasts from patients with Niemann-Pick Type II disease, including the panethnic type C (NPC) and Nova Scotia Acadian type D (NPD) forms, exhibit reduced or delayed stimulation of cholesterol esterification by low density lipoprotein (LDL). Based on recent evidence that cholesterol esterification can also be stimulated by cell surface sphingomyelin hydrolysis, we have compared the response of normal, NPC and NPD fibroblasts to treatment with exogenous sphingomyelinase (SMase). Staphylococcus aureus SMase (> 0.05 U/ml) hydrolyzed over 90% of endogenous sphingomyelin within 1 h and increased incorporation of [3H]oleic acid into cholesterol-[3H]oleate after an initial lag in all three cell types. However, normal levels of cholesterol esterification were not observed for NP Type II fibroblasts: four NPD cell lines exhibited an average of 32% of normal response while cholesterol esterification was only 20% in two well-characterized NPC lines. A third NPC line exhibited normal response to SMase despite greater than 90% impairment of LDL-stimuated cholesterol esterification. Incubation of fibroblasts with LDL followed by SMase produced a synergistic response, particularly in NPC cells where there was little response to either treatment alone. Chloroquinone abolished LDL-stimulated cholesterol esterification in normal fibroblasts but had no effect on the response to SMase, indicating that lysosomal enzymes may not be involved in SMase-mediated cholesterol esterification. These results suggest that intracellular processing of cholesterol derived from either LDL or release from the plasma membrane (by sphingomyelin hydrolysis) is affected in Niemann-Pick Type II cells and that these pathways can complement one another in the stimulation of cholesterol esterification.  相似文献   

3.
Niemann-Pick disease type C (NPC) is a genetic disorder in which patient cells have endosomal/lysosomal accumulation of cholesterol and sphingolipids. However, the relationship between sphingolipids and cholesterol accumulation in NPC cells has not been established. Here, we investigated the role of sphingomyelin (SM) on the accumulation of cholesterol in NPC cells. Reduction of SM by inhibition of the ceramide transfer protein CERT decreased the cholesterol accumulation in NPC cells. The accumulation of SM in NPC cells inhibited the transport of cholesterol to the endoplasmic reticulum. Overexpression of Rab9 in NPC cells reduced the cholesterol accumulation, which was recovered by treatment with SM. In NPC cells that overexpressed a Rab9 constitutively active mutant, SM treatment did not lead to the cholesterol accumulation. These results indicate that SM negatively regulates the Rab9-dependent vesicular trafficking of cholesterol, and a reduction in SM levels in NPC cells recovers the Rab9-dependent vesicular trafficking defect.  相似文献   

4.
5.
The Niemann-Pick C1 (NPC1) protein functions to regulate the transport of cholesterol from late endosomes/lysosomes to other cellular compartments after lipoprotein uptake through the coated-pit pathway. The present study examines the relative expression of NPC1 mRNA and NPC1 protein in different tissues of the mouse in relation to the uptake of total cholesterol carried in chylomicron remnants (CMr-TC), low density lipoproteins (LDL-TC), cholesteryl ester carried in high density lipoproteins (HDL-CE), and cholesterol synthesis. Results from this study demonstrate that the highest relative expression of NPC1 is in the liver, which is also the tissue with the highest uptake of CMr-TC, LDL-TC, HDL-CE, and cholesterol synthesis. However, there was no similar relation in the remaining tissues. To examine the relative expression of NPC1 in relation to the amount of cholesterol that flowed through the coated-pit pathway, mice were fed a diet supplemented with increasing amounts of cholesterol or cholestyramine. The results from this study demonstrated that there was no relation between the relative expression of NPC1 and the amount of cholesterol that flowed through the coated-pit pathway. We conclude that the relative expression of NPC1 is not regulated by the flow of cholesterol through cells in the mouse and is therefore constitutive.  相似文献   

6.
Regulation of intracellular cholesterol metabolism has been studied in Epstein-Barr virus-transformed lymphoblasts from patients with Niemann-Pick type C (NPC) and the Nova Scotia type D (NPD) disease. Addition of LDL to normal lymphoblasts cultured in lipoprotein-deficient medium increased cholesterol esterification 10-fold (to a maximum of 1.0 nmol/h/mg protein at 15 h), while little stimulation was seen in NPC cells. The response by NPD lymphoblasts was intermediate, reaching approximately half of normal values by 12–24 h. Lymphoblasts from both NPC and NPD obligate heterozygotes exhibited 50% of normal LDL-stimulated cholesterol esterification at 6 h, when activity was s1?0% of normal values in patient cells. Fluorescence staining with filipin indicated excessive intracellular accumulation of LDL-derived cholesterol in both NPC and NPD lymphoblasts. Downregulation of LDL receptor mRNA levels by LDL, measured by S1 nuclease protection assay, was also impaired in NP lymphoblasts and fibroblasts (NPC > NPD), although a similar rate of receptor protein down-regulation by LDL (t12 = 10–15 h) was observed in normal and NP lymphoblasts. In contrast, LDL down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not appear to be affected in NP cells: LDL produced a 3-fold (lymphoblasts) of > 10-fold (fibroblasts) decrease by 12 h in both normal and affected cells. Thus, NPC and NPD lymphoblasts exhibit distinct defects in cholesterol esterification and storage, similar to those observed in mutant fibroblasts. Other regulatory responses are also impaired in NPC lymphoblasts but appear to be less affected in NPD cells. Lymphoblasts should provide a valuable immortalized cell line model for study of defective regulation of cholesterol esterification and transfort in Niemann-Pick type II disease, and may also suitable for diagnosis and carrier detection.  相似文献   

7.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL2, an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL2 on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL2 at low concentrations (40 μg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL2 at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL2 has two potential roles in reverse cholesterol transport. In one, HDL2 is an acceptor of macrophage FC. In the other, more novel role, HDL2 increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL2 inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

8.
The Niemann‐Pick C1 and C2 (NPC1 and NPC2) proteins have a central role in regulating the transport of lipoprotein‐derived cholesterol from endocytic compartments to the endoplasmic reticulum for esterification by acyl‐CoA:cholesterol acyltransferase (ACAT) and feedback inhibition of the sterol regulatory element‐binding protein (SREBP) pathway. Since the NPC1 gene/protein has recently been shown to be downregulated by feedback inhibition of the SREBP pathway, the present study was performed to determine whether physiological downregulation of the NPC1 gene/protein alters the transport and metabolism of low‐density lipoprotein (LDL)‐derived cholesterol in human fibroblasts. To perform this study, three different culture conditions were used that included fibroblasts grown in lipoprotein‐deficient serum (LPDS), LPDS supplemented with LDL, and LPDS supplemented with LDL, followed by equilibration in the absence of LDL to allow the transport of LDL‐derived cholesterol from endocytic compartments and equilibration of cellular sterol pools. The results from this study indicated that in addition to the NPC1 gene/protein, the NPC2 gene/protein was also downregulated by LDL‐derived cholesterol‐dependent feedback inhibition and that downregulation of both the NPC1 and NPC2 genes/proteins was associated with the sequestration of LDL‐derived cholesterol within endocytic compartments, including late endosomes/lysosomes after equilibration. Therefore, it is proposed that physiological and coordinate downregulation of the NPC1 and NPC2 genes/proteins promotes the sequestration of LDL‐derived cholesterol within endocytic compartments and serves a role in maintaining intracellular cholesterol homeostasis. J. Cell. Biochem. 108: 1102–1116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Aging is one of major risk factors for developing hypercholesterolemia. To elucidate the cholesterol-lowering mechanism exerted by rice protein (RP), the effects on hepatic cholesterol outputs and cholesterol metabolism related enzymes were investigated in adult rats, which were fed by casein (CAS) and RP without cholesterol in diets. After 2 weeks of feeding, the significant cholesterol-lowering effect was observed in adult rats fed by RP compared to CAS. The hepatic total- and VLDL-cholesterol secretions into circulation were significantly depressed in RP group, whereas biliary outputs of bile acids and cholesterol were effectively stimulated by RP-feeding, causing an increase in fecal sterol excretion compared to CAS. As a result, the apparent cholesterol absorption was significantly inhibited by RP. RP-feeding significantly increased the activity and gene expression of cholesterol 7α-hydroxylase, whereas acyl-CoA:cholesterol acyltransferase-2 activity and gene expression were significantly decreased by RP as compared with CAS. Neither activity nor gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of RP did differ from CAS in the liver. The present study demonstrates that rice protein can prevent hypercholesterolemia through modifying hepatic cholesterol metabolism under cholesterol-free dietary condition. The findings suggest that hypocholesterolemic action induced by rice protein is attributed in part to the inhibition of cholesterol absorption during the adult period.  相似文献   

10.
STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.  相似文献   

11.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1−/− mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1+/+ and Npc1−/− microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1−/− microglia is ~ 60% lower than in Npc1+/+ microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1−/− and Npc1+/+ neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1−/− microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease.  相似文献   

12.
Niemann–Pick C disease is a fatal progressive neurodegenerative disorder caused in 95% of cases by mutations in the NPC1 gene; the remaining 5% of cases result from mutations in the NPC2 gene. The major biochemical manifestation of NPC1 deficiency is an abnormal sequestration of lipids, including cholesterol and glycosphingolipids, in late endosomes/lysosomes (LE/L) of all cells. In this review, we summarize the current knowledge of the NPC1 protein in mammalian cells with particular focus on how defects in NPC1 alter lipid trafficking and neuronal functions. NPC1 is a protein of LE/L and is predicted to contain thirteen transmembrane domains, five of which constitute a sterol-sensing domain. The precise function of NPC1, and the mechanism by which NPC1 and NPC2 (both cholesterol binding proteins) act together to promote the movement of cholesterol and other lipids out of the LE/L, have not yet been established. Recent evidence suggests that the sequestration of cholesterol in LE/L of cells of the brain (neurons and glial cells) contributes to the widespread death and dysfunction of neurons in the brain. Potential therapies include treatments that promote the removal of cholesterol and glycosphingolipids from LE/L. Currently, the most promising approach for extending life-span and improving the quality of life for NPC patients is a combination of several treatments each of which individually modestly slows disease progression.  相似文献   

13.
Cholesterol is an important precursor for numerous biologically active molecules, and it plays a major role in membrane structure and function. Cholesterol can be endogenously synthesized or exogenously taken up via the endocytic vesicle system and subsequently delivered to post-endo/lysosomal sites including the plasma membrane and the endoplasmic reticulum. Niemann–Pick C (NPC) disease results in the accumulation of exogenously-derived cholesterol, as well as other lipids, in late endosomes and lysosomes (LE/LY). Identification of the two genes that underlie NPC disease, NPC1 and NPC2, has focused attention on the mechanisms by which lipids, in particular cholesterol, are transported out of the LE/LY compartment. This review discusses the role of the NPC2 protein in cholesterol transport, and the potential for concerted action of NPC1 and NPC2 in regulating normal intracellular cholesterol homeostasis.  相似文献   

14.
We have previously demonstrated that neutral cholesterol ester hydrolase 1 (Nceh1) regulates foam cell formation and atherogenesis through the catalytic activity of cholesterol ester hydrolysis, and that Nceh1 and hormone-sensitive lipase (Lipe) are responsible for the majority of neutral cholesterol ester hydrolase activity in macrophages. There are several cholesterol ester-metabolizing tissues and cells other than macrophages, among which adrenocortical cells are also known to utilize the intracellular cholesterol for steroidogenesis. It has been believed that the mobilization of intracellular cholesterol ester in adrenal glands was facilitated solely by Lipe. We herein demonstrate that Nceh1 is also involved in cholesterol ester hydrolysis in adrenal glands. While Lipe deficiency remarkably reduced the neutral cholesterol ester hydrolase activity in adrenal glands as previously reported, additional inactivation of Nceh1 gene completely abrogated the activity. Adrenal glands were enlarged in proportion to the degree of reduced neutral cholesterol ester hydrolase activity, and the enlargement of adrenal glands and the accumulation of cholesterol esters were most pronounced in the Nceh1/Lipe double-deficient mice. Thus Nceh1 is involved in the adrenal cholesterol metabolism, and the cholesterol ester hydrolytic activity in adrenal glands is associated with the organ enlargement.  相似文献   

15.
Macrophages store excess unesterified cholesterol (free, FC) in the form of cholesteryl ester (CE) in cytoplasmic lipid droplets. The hydrolysis of droplet-CE in peripheral foam cells is critical to HDL-promoted reverse cholesterol transport because it represents the first step in cellular cholesterol clearance, as only FC is effluxed from cells to HDL. Cytoplasmic lipid droplets move within the cell utilizing the cytoskeletal network, but, little is known about the influence of the cytoskeleton on lipid droplet formation. To understand this role we employed cytochalasin D (cyt.D) to promote actin depolymerization in J774 macrophages. Incubating J774 with acetylated LDL creates foam cells having a 4-fold increase in cellular cholesterol content (30-40% cholesterol present as cholesteryl ester (CE)) in cytoplasmic droplets. Lipid droplets formed in the presence of cyt.D are smaller in diameter. CE-deposition and -hydrolysis are decreased when cells are cholesterol-enriched in the presence of cyt.D or latrunculin A, another cytoskeleton disrupting agent. However, when lipid droplets formed in the presence of cyt.D are isolated and incubated with an exogenous CE hydrolase, the CE is more rapidly metabolized compared to droplets from control cells. This is apparently due to the smaller size and altered lipid composition of the droplets formed in the presence of cyt.D. Cytoskeletal proteins found on CE droplets influence droplet lipid composition and maturation in model foam cells. In J774 macrophages, cytoskeletal proteins are apparently involved in facilitating the interaction of lipid droplets and a cytosolic neutral CE hydrolase and may play a role in foam cell formation. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

16.
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.  相似文献   

17.
Gimpl G  Gehrig-Burger K 《Steroids》2011,76(3):216-231
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.  相似文献   

18.
Dehydroepiandrosterone (DHEA) fatty acyl esters once incorporated in high density lipoprotein (HDL) induce a stronger vasodilatory response in rat mesenteric arteries ex vivo compared to native HDL. We studied the role of HDL receptor, scavenger receptor class B, type 1 (SR-B1), as well as estrogen and androgen receptors in the vasodilatory response of HDL-associated DHEA fatty acyl esters. Using cultured human vascular endothelial cells (HUVEC), we investigated the possible internalization and cellular response of HDL-associated DHEA esters. We prepared DHEA ester-enriched HDL by incubating human plasma in the presence of DHEA. After isolation and purification, HDL was added in cumulative doses to arterial rings precontracted with noradrenaline. Inhibition of the function of SR-B1 almost completely abolished maximal vasorelaxation by DHEA-enriched HDL while estrogen or androgen receptor blockage had no significant effect. When HUVECs were incubated in the presence of [3H]DHEA ester-enriched HDL, the amount of intracellular [3H]-radioactivity increased steadily during 24 h. Blocking of SR-B1 reduced this uptake by a mean of 30%. The proportion of unesterified [3H]DHEA, as analyzed by thin-layer chromatography, increased intracellularly and in the cell culture media after several hours of incubation of the cells in the presence of [3H]DHEA ester-enriched HDL. This indicated slow hydrolysis of DHEA fatty acyl esters and subsequent excretion of unesterified DHEA by the cells. In conclusion, DHEA-enriched HDL induced vasorelaxation via the SR-B1-facilitated pathway. However, this vasodilation is not likely to be attributed to rapid hydrolysis of HDL-associated DHEA esters by the vascular endothelium.  相似文献   

19.
Wia Baron  Dick Hoekstra 《FEBS letters》2010,584(9):1760-12632
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways.  相似文献   

20.
The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号