首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Severe neurological involvement characterizes Niemann Pick disease (NPD) type A, an inherited disorder caused by loss of function mutations in the gene encoding acid sphingomyelinase (ASM). Mice lacking ASM, which mimic NPD type A, have provided important insights into the aberrant brain phenotypes induced by ASM deficiency. For example, lipid alterations, including the accumulation of sphingolipids, affect the membranes of different subcellular compartments of neurons and glial cells, leading to anomalies in signalling pathways, neuronal polarization, calcium homeostasis, synaptic plasticity, myelin production or immune response. These findings contribute to our understanding of the overall role of sphingolipids and their metabolic enzymes in brain physiology, and pave the way to design and test new therapeutic strategies for type A NPD and other neurodegenerative disorders. Some of these have already been tested in mice lacking ASM with promising results.  相似文献   

2.
An inherited deficiency of acid sphingomyelinase (ASM) activity results in the Type A and B forms of Niemann-Pick disease (NPD). The aim of this study was to evaluate the effects of recombinant human ASM (rhASM) replacement therapy on the mouse model, by comparing different routes of administration. Eight NPD mice received rhASM via an intravenous injection (IV) administered at a dose of 1 mg/kg and another group of 8 NPD mice received the same dose by subcutaneous injection (SC). The plasma levels of ASM activity in intravenously administered mice were significantly elevated immediately after injection. In contrast, in the subcutaneously injected mice, the level of ASM activity was maximal 6 h after injection. The levels of ASM activity in both groups had declined substantially by 2 days after injection. It was concluded that rhASM administered by subcutaneous injection is completely absorbed, and offers a similar efficacy to intravenously administered recombinant enzyme.  相似文献   

3.
Types A and B Niemann-Pick disease (NPD) are lipid storage disorders caused by the deficient activity of acid sphingomyelinase (ASM). In humans, NPD is associated with the dysfunction of numerous organs including the lung. Gene targeting of the ASM gene in transgenic mice produced an animal model with features typical of NPD, including pulmonary inflammation. To assess mechanisms by which ASM perturbed lung function, we studied lung morphology, surfactant content, and metabolism in ASM-deficient mice in vivo. Pulmonary inflammation, with increased cellular infiltrates and the accumulation of alveolar material, was associated with alterations in surfactant content. Saturated phosphatidylcholine (SatPC) content was increased twofold, and sphingomyelin content was increased 5.5-fold in lungs of the ASM knockout (ASMKO) mice. Additional sphingomyelin enhanced the sensitivity of surfactant inhibition by plasma proteins. Clearance of SatPC from the lungs of ASMKO mice was decreased. Catabolism of SatPC by alveolar macrophages from the ASMKO mouse was significantly decreased, likely accounting for decreased pulmonary SatPC in vivo. In summary, ASM is required for normal surfactant catabolism by alveolar macrophages in vivo. Alterations in surfactant composition, including increased sphingomyelin content, contributed to the abnormal surfactant function observed in the ASM-deficient mouse.  相似文献   

4.
Progressive accumulation of lipid-laden macrophages is a hallmark of the acid sphingomyelinase (ASM)-deficient forms of Niemann-Pick disease (i.e. Types A and B NPD). To investigate the mechanisms underlying enzyme replacement therapy for this disorder, we studied the uptake of recombinant, human ASM (rhASM) by alveolar macrophages from ASM knock-out (ASMKO) mice. The recombinant enzyme used for these studies was produced in Chinese hamster ovary cells and contained complex type, N-linked oligosaccharides. Binding of radiolabeled, rhASM to the ASMKO macrophages was enhanced as compared with normal macrophages, consistent with their larger size and increased surface area. However, internalization of the enzyme by the ASMKO cells was markedly reduced when compared with normal cells. Studies using receptor-specific ligands to inhibit enzyme uptake revealed that in normal cells rhASM was taken up by a combination of mannose and mannose 6-phosphate receptors (MR and M6PR, respectively), whereas in the ASMKO cells the M6PR had a minimal role in rhASM uptake. Expression of M6PR mRNA was normal in the ASMKO cells, although Western blotting revealed more receptors in these cells when compared with normal. We therefore hypothesized that lipid accumulation in ASMKO macrophages led to abnormalities in M6PR trafficking and/or degradation, resulting in reduced enzyme uptake. Consistent with this hypothesis, we also found that, when rhASM was modified to expose terminal mannose residues and target mannose receptors, the uptake of this modified enzyme form by ASMKO cells was approximately 10-fold greater when compared with the "complex" type rhASM. These findings have important implications for NPD enzyme replacement therapy, particularly in the lung.  相似文献   

5.
Acid sphingomyelinase (ASM; sphingomyelin phosphodiesterase, EC 3.1.4.12) is the lysosomal enzyme that hydrolyzes sphingomyelin (SPM) to phosphorylcholine and ceramide. An inherited deficiency of ASM activity results in Types A and B Niemann-Pick disease (NPD). In this study we report a new assay method to detect ASM activity and diagnose NPD using the fluorescent substrate BODIPY C12-SPM and reverse-phase high-performance liquid chromatography (HPLC). The reaction product, BODIPY C12-ceramide (B12Cer), could be clearly and efficiently separated from the substrate within 4 min using a reverse-phase column (Aquasil C18, Keystone Scientific). Femtomole quantities of B12Cer could be detected in as little as 1.0 micro l of human plasma, providing a sensitive measure of ASM activity. The mean ASM activity in human plasma from NPD patients (36 pmol/ml/h) was only 2.7% of that in normal plasma (1334 pmol/ml/h), confirming the specificity and diagnostic value of this new assay method. Importantly, the mean ASM activity in human plasma from NPD carriers (258.3 pmol/ml/h) also was significantly reduced (19.5% of normal). The ranges of ASM plasma activities in NPD patients (N=19), NPD carriers (N=11), and normal subjects (N=15) were 2.5-97.3, 108-551, and 1030-2124 pmol/ml/h, respectively. Based on these results, we suggest that this fluorescence-based HPLC assay method is a reliable, rapid, and highly sensitive technique to determine ASM activity and that plasma is a very reliable and simple source for the accurate diagnosis of NPD patients and carriers based on ASM activity.  相似文献   

6.
The deficient activity of the human lysosomal hydrolase, acid sphingomyelinase (ASM, EC 3.1.4.12), results in the neuronopathic (Type A) and non-neuronopathic (Type B) forms of Niemann-Pick disease (NPD). To investigate the genetic basis of the phenotypic heterogeneity in NPD, the molecular lesions in the ASM gene were determined from three unrelated NPD patients and evaluated by transient expression in COS-1 cells. A Type A NPD patient of Asian Indian ancestry (proband 1) was homoallelic for a T to A transversion in exon 2 of the ASM gene which predicted a premature stop at codon 261 of the ASM polypeptide (designated L261X). In contrast, an unrelated Type A patient of European ancestry (proband 2) was heteroallelic for a two-base (TT) deletion in exon 2 which caused a frame-shift mutation at ASM codon 178 (designated fsL178), leading to a premature stop at codon 190, and a G to A transition in exon 3 which caused a methionine to isoleucine substitution at codon 382 (designated M382I). Transient expression of the fsL178, L261X, and M382I mutations in COS-1 cells demonstrated that these lesions did not produce catalytically active ASM, consistent with the severe neuronopathic Type A NPD phenotype. In contrast, an unrelated Type B patient of European descent (proband 3) was heteroallelic for two missense mutations, a G to A transition in exon 2 which predicted a glycine to arginine substitution at ASM codon 242 (designated G242R), and an A to G transition in exon 3 which resulted in an asparagine to serine substitution at codon 383 (designated N383S). Interestingly, the G242R allele produced ASM activity in COS-1 cells at levels about 40% of that expressed by the normal allele, thereby explaining the mild Type B phenotype of proband 3 and the high residual activity (i.e. approximately 15% of normal) in cultured lymphoblasts. In contrast, the N383S allele did not produce catalytically active enzyme. None of these five ASM mutations was detected in over 60 other unrelated NPD patients analyzed, nor were these mutations found in over 100 normal ASM alleles. Thus, small deletions or nonsense mutations which trunctated the ASM polypeptide, or missense mutations that rendered the enzyme noncatalytic, resulted in Type A NPD disease, whereas a missense mutation that produced a defective enzyme with residual catalytic activity caused the milder nonneuronopathic Type B phenotype. These findings have facilitated genotype/phenotype correlations for this lysosomal storage disease and provided insights into the functional organization of the ASM polypeptide.  相似文献   

7.
We have collected demographic and/or mutation information on a worldwide sample of 394 patients with type B Niemann-Pick disease (NPD). The disorder is panethnic, with the highest incidence occurring in individuals of Turkish, Arabic, and North African descent. Only five of the 394 patients were Ashkenazi Jewish, revealing that, unlike the type A form of NPD, type B NPD does not occur frequently within this population. Mutation analysis of the acid sphingomyelinase (ASM) gene (designated "SMPD1") was performed on 228 patients (324 unique alleles), and several novel, "common" mutations were found. Among these were the L137P, fsP189, and L549P mutations, which accounted for approximately 75% of the alleles in Turkish patients, the H421Y and K576N mutations, which accounted for approximately 85% of the alleles in Saudi Arabian patients, the S379P, R441X, R474W, and F480L mutations, which accounted for approximately 55% of the alleles in Portuguese/Brazilian patients, and the A196P mutation, which accounted for approximately 42% of the alleles in Scottish/English patients. The previously reported DeltaR608 mutation occurred on approximately 12% of the alleles studied. Overall, a total of 45 novel mutations were found, and several new genotype/phenotype correlations were identified. In particular, the L137P, A196P, and R474W mutations were consistent with a less severe form of type B NPD, whereas the H421Y and K576N mutations led to an early-onset, more severe form that was specific to Saudi Arabia. These data provide the first extensive demographic assessment of this disorder and describe several new mutations that can be used to predict phenotypic outcome and to gain new insights into the structure and function of ASM.  相似文献   

8.
9.
An inherited deficiency of acid sphingomyelinase (ASM) activity results in the Type A and B forms of Niemann-Pick disease (NPD). Using the ASM-deficient mouse model (ASMKO) of NPD, we evaluated the efficacy of enzyme replacement therapy (ERT) for the treatment of this disorder. Recombinant human ASM (rhASM) was purified from the media of overexpressing Chinese Hamster ovary cells and i.v. injected into 16 five-month-old ASMKO mice at doses of 0.3, 1, 3, or 10 mg/kg every other day for 14 days (7 injections). On day 16, the animals were killed and the tissues were analyzed for their sphingomyelin (SPM) content. Notably, the SPM levels were markedly reduced in the hearts, livers, and spleens of these animals, and to a lesser degree in the lungs. Little or no substrate depletion was found in the kidneys or brains. Based on these results, three additional 5-month-old ASMKO animals were injected every other day with 5 mg/kg for 8 days (4 injections) and killed on day 10 for histological analysis. Consistent with the biochemical results, marked histological improvements were observed in the livers, spleens, and lungs, indicating a reversal of the disease pathology. A group of 10 ASMKO mice were then i.v. injected once a week with 1 mg/kg rhASM for 15 wk, starting at 3 wk of age. Although anti-rhASM antibodies were produced in these mice, the antibodies were not neutralizing and no adverse effects were observed from this treatment. Weight gain and rota-rod performance were slightly improved in the treated animals as compared with ASMKO control animals, but significant neurological deficits were still observed and their life span was not extended by ERT. In contrast with these CNS results, striking histological and biochemical improvements were found in the reticuloendothelial system organs (livers, spleens, and lungs). These studies indicate that ERT should be an effective therapeutic approach for Type B NPD, but is unlikely to prevent the severe neurodegeneration associated with Type A NPD.  相似文献   

10.
11.
Acid sphingomyelinase (ASM) converts sphingomyelin (SM) into ceramide. Mutations in the ASM gene cause the mental retardation syndrome Niemann Pick type A (NPA), characterized as a lysosomal disorder because of the SM accumulation in these organelles. We here report that neurons from mice lacking ASM (ASMKO) present increased plasma membrane SM levels evident in detergent-resistant membranes. Paralleling this lipidic alteration, GPI-anchored proteins show an aberrant distribution in both axons and dendrites instead of the axonal enrichment observed in neurons from wild-type mice. Trafficking analysis suggests that this is due to defective internalization from dendrites. Increasing the SM content in wild-type neurons mimics these defects, whereas SM reduction in ASMKO neurons prevents their occurrence. Moreover, expression of active RhoA, which membrane attachment is affected by SM accumulation, rescues internalization rates in ASMKO neurons. These data unveil an unexpected role for ASM in neuronal plasma membrane organization and trafficking providing insight on the molecular mechanisms involved. They also suggest that deficiencies in such processes could be key pathological events in NPA disease.  相似文献   

12.
Niemann–Pick disease (NPD) is a lysosomal storage disorder that results from the deficiency of a lysosomal enzyme, acid sphingomyelinase. Niemann–Pick disease type A and B is caused by mutations in the sphingomyelin phosphodiesterase gene (SMPD1) coding for ASM. The aim of this study was to evaluate the spectrum of SMPD1 gene mutations in Turkish NPD patients and to study genotype–phenotype associations. We present a molecular analysis of 10 Turkish NPD type A/B patients. Four of the patients had type A and six had type B NPD. All mutant SMPD1 alleles were identified, including 5 different mutations, 1 of which was novel. These mutations included three missense mutations: c.409T>C (p.L137P), c.1262 A>G (p.H421R) and c.1552T>C (p.L549P), a common frameshift mutation in codon 189, identified in three patients, is caused by the deletion of the 567T, introducing a stop codon 65 amino acids downstream (p.P189fsX65), and a novel frameshift mutation c.1755delC (p.P585PfsX24) which was not reported previously.  相似文献   

13.
Niemann-Pick type D (NPD) disease is a progressive neurodegenerative disorder characterized by the accumulation of tissue cholesterol and sphingomyelin. This disorder is relatively common in southwestern Nova Scotia, because of a founder effect. Our previous studies, using classic linkage analysis of this large extended kindred, defined the critical gene region to a 13-cM chromosome segment between D18S40 and D18S66. A recently isolated gene from this region, NPC1, is mutated in the majority of patients with Niemann-Pick type C disease. We have identified a point mutation within this gene (G3097-->T; Gly992-->Trp) that shows complete linkage disequilibrium with NPD, confirming that NPD is an allelic variant of NPC1.  相似文献   

14.
Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome–lysosome fusion but because of inefficient autophago–lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions.  相似文献   

15.
Niemann-Pick type II disease is a severe disorder characterized by accumulation of tissue cholesterol and sphingomyelin and by progressive degeneration of the nervous system. This disease has two clinically similar subtypes, type C (NPC) and type D (NPD). NPC is clinically variable and has been identified in many ethnic groups. NPD, on the other hand, has been reported only in descendants of an Acadian couple who lived in Nova Scotia in the early 18th century and has a more homogeneous expression resembling that of less severely affected NPC patients. Despite biochemical differences, it has not been established whether NPC and NPD are allelic variants of the same disease. We report here that NPD is tightly linked (recombination fraction .00; maximum LOD score 4.50) to a microsatellite marker, D18S480, from the centromeric region of chromosome 18q. Carstea et al. have reported that the NPC gene maps to this same site; therefore we suggest that NPC and NPD likely result from mutations in the same gene.  相似文献   

16.
Niemann-Pick disease (NPD) is a lysosomal storage disease caused by the loss of acid sphingomyelinase (ASMase) that features neurodegeneration and liver disease. Because ASMase-knock-out mice models NPD and our previous findings revealed that ASMase activates cathepsins B/D (CtsB/D), our aim was to investigate the expression and processing of CtsB/D in hepatic stellate cells (HSCs) from ASMase-null mice and their role in liver fibrosis. Surprisingly, HSCs from ASMase-knock-out mice exhibit increased basal level and activity of CtsB as well as its in vitro processing in culture, paralleling the enhanced expression of fibrogenic markers α-smooth muscle actin (α-SMA), TGF-β, and pro-collagen-α1(I) (Col1A1). Moreover, pharmacological inhibition of CtsB blunted the expression of α-SMA and Col1A1 and proliferation of HSCs from ASMase-knock-out mice. Consistent with the enhanced activation of CtsB in HSCs from ASMase-null mice, the in vivo liver fibrosis induced by chronic treatment with CCl(4) increased in ASMase-null compared with wild-type mice, an effect that was reduced upon CtsB inhibition. In addition to liver, the enhanced proteolytic processing of CtsB was also observed in brain and lung of ASMase-knock-out mice, suggesting that the overexpression of CtsB may underlie the phenotype of NPD. Thus, these findings reveal a functional relationship between ASMase and CtsB and that the ablation of ASMase leads to the enhanced processing and activation of CtsB. Therefore, targeting CtsB may be of relevance in the treatment of liver fibrosis in patients with NPD.  相似文献   

17.
NAD(P)H oxidase is one of the critical enzymes mediating cellular production of reactive oxygen species and has a central role in airway smooth muscle (ASM) cell proliferation. Since reactive oxygen species also affect ASM contractile response, we hypothesized a regulatory role of NAD(P)H oxidase in ASM contractility. We therefore studied ASM function in wild-type mice (C57BL/6J) and mice deficient in a component (p47phox) of NAD(P)H oxidase. In histological sections of the trachea, we found that the area occupied by ASM was 17% more in p47(phox-/-) than in wild-type mice. After correcting for the difference in ASM content, we found that force generation did not vary between the two genotypes. Similarly, their ASM shortening velocity, maximal power, and sensitivity to acetylcholine, as well as airway responsiveness to methacholine in vivo, were not significantly different. The main finding of this study was a significantly reduced ASM relaxation in p47phox-/- compared with wild-type mice both during the stimulus and after the end of stimulation. The tension relaxation attained at the 20th second of electric field stimulation was, respectively, 17.6 +/- 2.4 and 9.2 +/- 2.3% in null and wild-type mice (P <0.01 by t-test). Similar significant differences were found in the rate of tension relaxation and the time required to reduce tension by one-half. Our data suggest that NAD(P)H oxidase may have a role in the structural arrangement and mechanical properties of the airway tissue. Most importantly, we report the first evidence that the p47phox subunit of NAD(P)H oxidase plays a role in ASM relaxation.  相似文献   

18.
19.
A rapid purification method was developed to isolate milligram quantities of human acid sphingomyelinase from the media of overexpressing Chinese hamster ovary cells. The purified, recombinant enzyme (rhASM) had physical and kinetic characteristics that were consistent with those reported for the non-recombinant enzyme, including an acidic pH optimum and sensitivity to sulfhydryl reducing reagents and the zinc specific chelator, 1, 10-phenanthroline. A novel assay using fluorescently conjugated sphingomyelin was developed to explore the substrate binding properties of rhASM. Substrate binding required a fatty acid chain length of at least six carbons and the presence of the phosphocholine headgroup on sphingomyelin. Substrate binding also required an acidic pH, and was inhibited by pretreatment of the enzyme with sulfhydral reducing reagents or 1,10-phenanthroline. rhASM was rapidly internalized by cultured skin fibroblasts from Niemann-Pick disease (NPD) patients, and approximately 50% of this uptake was dependent on the mannose 6-phosphate receptor system. Studies using FITC-labeled rhASM revealed that by 1 h the internalized enzyme was localized to acidic compartments and could degrade sphingomyelin, the first demonstration that a lysosomal sphingolipid hydrolase can be fluorescently labeled and retain its biological activity. Intravenous injection of rhASM into ASM knock-out mice showed that the t(1/2) in the plasma was less than 5 min, and that the majority of the injected enzyme was taken up by the liver, followed by the spleen. Thus, these studies lay the foundation for future structure/function investigations of ASM, further investigations into this enzyme's role in ceramide mediated signal transduction, and the evaluation of enzyme replacement therapy for NPD using the mouse model.  相似文献   

20.
Sphingomyelin is an important lipid component of cell membranes and lipoproteins which can be hydrolyzed by sphingomyelinases into ceramide and phosphorylcholine. The type A and B forms of Niemann-Pick disease (NPD) are lipid storage disorders due to the deficient activity of the enzyme acid sphingomyelinase, and the resultant accumulation of sphingomyelin in cells and tissues. In this paper we report a new, enzyme-based method to quantify the levels of sphingomyelin in tissues and plasma of normal individuals and NPD patients. The method utilizes sphingomyelinase from Bacillus cereus to completely hydrolyze the sphingomyelin into ceramide. Quantification of the sphingomyelin-derived ceramide is accomplished using Escherichia coli diacylglycerol (DAG) kinase and [gamma-(32)P]ATP. The resulting [(32)P]ceramide is quantified using a phosphor-imager system following TLC separation. This procedure allowed quantification of sphingomyelin over a broad range from 10 pmol to 1 nmol. To validate this assay we quantified sphingomyelin in plasma and tissues obtained from normal and NPD mice and humans. The sphingomyelin content in adult homozygous (-/-) or heterozygous (+/-) NPD mouse plasma was significantly elevated compared to that of normal mice (up to twofold). Moreover, the accumulated sphingomyelin in the tissues of NPD mice was 4 to 40 times higher than that in normal mice depending on the tissue analyzed. The sphingomyelin levels in plasma from several type B NPD patients also were significantly elevated compared to normal individuals of the same age. Based on these results we propose that this new, enzyme-based procedure can provide sensitive and reproducible sphingomyelin quantification in tissues and fluids from normal individuals and NPD patients. It could be a useful tool for the diagnosis of NPD and the evaluation of NPD treatment protocols, as well as for the study of ceramide-mediated apoptosis since the method provides the simultaneous determination of sphingomyelin and ceramide in the same lipid extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号