首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intracellular calcium, [Ca2+]i, can regulate meiotic progression of mammalian oocytes. However, the role of [Ca2+]i in the regulation of the spermatogenic process and its cellular homeostatic mechanisms in spermatogenic cells has not been elucidated. Using intracellular fluorescent probes for Ca2+ and immunodetection of plasma membrane (PM) Ca2+-ATPases, we report that: a) rat round spermatids maintain [Ca2+]i levels of 60 ± 5 nM (SEM), as estimated with fluo-3 in single cells or fura-2 in cells in suspension; b) these cells regulate [Ca2+]i by actively extruding it using a PM Ca2+-ATPase; c) rat spermatids also actively transport Ca2+ by sarco-endoplasmic reticulum type ATPases (SERCA); d) rat spermatids possess non-mitochondrial intracellular Ca2+i stores insensitive to thapsigargin but releasable by ionomycin; and e) rat spermatids do not activate Ca2+ entry mechanisms by the release of Ca2+ from SERCA-regulated stores. These results demonstrate that rat round spermatids can generate modulated intracellular Ca2+ signals upon activation of Ca2+ channels or Ca2+ release from intracellular stores.  相似文献   

2.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

3.
Duchenne muscular dystrophy is an inherited disease caused by the absence of dystrophin, a structural protein normally located under the sarcolemma of skeletal muscle fibers. Muscle degeneration occurring in this disease is thought to be partly caused by increased Ca2+ entry through sarcolemmal cationic channels. Using the Mn2+ quench method, we show here that Mn2+ entry triggered by Ca2+ store depletion but not basal Mn2+ entry relies on Ca2+-independent PLA2 (iPLA2) activity in dystrophic fibers isolated from a murine model of Duchenne muscular dystrophy, the mdx5cv mouse. iPLA2 was found to be localized in the vicinity of the sarcolemma and consistently, the iPLA2 lipid product lysophosphatidylcholine was found to trigger Ca2+ entry through sarcolemmal channels, suggesting that it acts as an intracellular messenger responsible for store-operated channels opening in dystrophic fibers. Our results suggest that inhibition of iPLA2 and lysophospholipid production may be of interest to reduce Ca2+ entry and subsequent degeneration of dystrophic muscle.  相似文献   

4.
We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate–aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling.  相似文献   

5.
6.
Ole H. Petersen   《Cell calcium》2003,33(5-6):337
Studies of Ca2+ transport pathways in exocrine gland cells have been useful, chiefly because of the polarized nature of the secretory epithelial cells. In pancreatic acinar cells, for example, Ca2+ reloading of empty intracellular stores can occur solely via Ca2+ entry through the basal part of the plasma membrane. On the other hand, the principal site for intracellular Ca2+ release—with the highest concentration of inositol 1,4,5-trisphosphate (IP3) receptors—is in the apical secretory pole close to the apical plasma membrane. This apical part of the plasma membrane contains the highest density of Ca2+ pumps and is therefore the principal site for Ca2+ extrusion. On the basis of the known properties of Ca2+ entry and exit pathways in exocrine gland cells, the mechanisms controlling Ca2+ exit and entry are discussed in relation to recent direct information about Ca2+ transport into and out of the endoplasmic reticulum (ER) and the mitochondria in these cells.  相似文献   

7.
Modulation of L-type Ca2+ channels by tonic elevation of cytoplasmic Ca2+ was investigated in intact cells and inside-out patches from human umbilical vein smooth muscle. Ba2+ was used as charge carrier, and run down of Ca2+ channel activity in inside-out patches was prevented with calpastatin plus ATP. Increasing cytoplasmic Ca2+ in intact cells by elevation of extracellular Ca2+ in the presence of the ionophore A23187 inhibited the activity of L-type Ca2+ channels in cell-attached patches. Measurement of the actual level of intracellular free Ca2+ with fura-2 revealed a 50% inhibitory concentration (IC50) of 260 nM and a Hill coefficient close to 4 for Ca2+- dependent inhibition. Ca2+-induced inhibition of Ca2+ channel activity in intact cells was due to a reduction of channel open probability and availability. Ca2+-induced inhibition was not affected by the protein kinase inhibitor H-7 (10 μM) or the cytoskeleton disruptive agent cytochalasin B (20 μM), but prevented by cyclosporin A (1 μg/ ml), an inhibitor of protein phosphatase 2B (calcineurin). Elevation of Ca2+ at the cytoplasmic side of inside-out patches inhibited Ca2+ channels with an IC50 of 2 μM and a Hill coefficient close to unity. Direct Ca2+-dependent inhibition in cell-free patches was due to a reduction of open probability, whereas availability was barely affected. Application of purified protein phosphatase 2B (12 U/ml) to the cytoplasmic side of inside-out patches at a free Ca2+ concentration of 1 μM inhibited Ca2+ channel open probability and availability. Elevation of cytoplasmic Ca2+ in the presence of PP2B, suppressed channel activity in inside-out patches with an IC50 of ∼380 nM and a Hill coefficient of ∼3; i.e., characteristics reminiscent of the Ca2+ sensitivity of Ca2+ channels in intact cells. Our results suggest that L-type Ca2+ channels of smooth muscle are controlled by two Ca2+-dependent negative feedback mechanisms. These mechanisms are based on (a) a protein phosphatase 2B-mediated dephosphorylation process, and (b) the interaction of intracellular Ca2+ with a single membrane-associated site that may reside on the channel protein itself.  相似文献   

8.
To study the role of the inositol 1,3,4,5-trisphosphate–binding protein GAP1IP4BP in store-operated Ca2+ entry, we established a human erythroleukemia (HEL) cell line in which the expression of GAP1IP4BP was substantially reduced by transfection with a vector containing antisense DNA under control of a Rous Sarcoma virus promoter and the Escherichia coli LacI repressor (AS-HEL cells). Control cells were transfected with vector lacking antisense DNA (V-HEL cells). GAP1IP4BP protein, which is a member of the GTPase-activating protein (GAP1) family, was reduced by 85% in AS-HEL cells and was further reduced by 96% by treatment with isopropylthio-β-d- galactoside to relieve LacI repression. The loss of GAP1IP4BP was associated with both a membrane hyperpolarization and a substantially increased Ca2+ entry induced by thrombin or thapsigargin. The activation of intermediate conductance Ca2+-activated K+ channels in AS-HEL cells (not seen in V-HEL cells) was responsible for the membrane hyperpolarization and the enhanced Ca2+ entry, and both were blocked by charybdotoxin. Stimulated V-HEL cells did not hyperpolarize and basal Ca2+ influx was unaffected by charybdotoxin. In V-HEL cells hyperpolarized by removal of extracellular K+, the thapsigargin-stimulated Ca2+ influx was increased. Expression of mRNA for the human Ca2+-activated intermediate conductance channel KCa4 was equivalent in both AS-HEL and V-HEL cells, suggesting that the specific appearance of calcium-activated potassium current (IK(Ca)) in AS-HEL cells was possibly due to modulation of preexisting channels. Our results demonstrate that GAP1IP4BP, likely working through a signaling pathway dependent on a small GTP-binding protein, can regulate the function of K(Ca) channels that produce a hyperpolarizing current that substantially enhances the magnitude and time course of Ca2+ entry subsequent to the release of internal Ca2+ stores.  相似文献   

9.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

10.
In electrically non-excitable cells, one major source of Ca2+ influx is through the store-operated (or Ca2+ release-activated Ca2+) channel by which the process of emptying the intracellular Ca2+ stores results in the activation of Ca2+ channels in the plasma membrane. Using both whole-cell patch-clamp and Ca2+ imaging technique, we describe the electrophysiology mechanism underlying formyl-peptide receptor like 1 (FPRL1) linked to intracellular Ca2+ mobilization. The FPRL1 agonists induced Ca2+ release from the endoplasmic reticulum and subsequently evoked ICRAC-like currents displaying fast inactivation in K562 erythroleukemia cells which expresses FPRL1, but had almost no effect in K562 cells treated with FPRL1 RNA-interference and HEK293 cells which showed no FPRL1 expression. The currents were impaired after either complete store depletion by the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, or after inhibition of PLC by U73122. Our results present the first evidence that FPRL1 is a potent mediator in the activation of CRAC channels.  相似文献   

11.
Tunicamycin effect on thapsigargin-induced store-operated calcium entry was investigated. Ca2+ influx was stimulated by 50% upon exposure of Jurkat cells to tunicamycin. Moreover, tunicamycin efficiently prevented the inhibition of store-operated calcium entry caused by dissipation of mitochondrial membrane potential. Protective action of tunicamycin on store-operated Ca2+ entry was also partially preserved in Jurkat cells depleted of ATP, while Ca2+ entry into ATP-deprived cells grown in tunicamycin-free medium was almost completely inhibited. Tunicamycin-evoked changes in cellular Ca2+ fluxes coincided with decreased glycosylation of STIM1 protein. Although the latter observation is correlative and needs additional confirmation it may suggest that deglycosylation of STIM1 protein deprives store-operated calcium entry system of an important regulatory mechanism. This study suggests a novel mechanism of modulation of the activity of store-operated calcium channels in lymphoidal cells.  相似文献   

12.
Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca2+ homeostasis and particularly Ca2+ entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca2+ levels in endothelial cells. We showed that acute MG application doesn’t evoke any instantaneous changes in the intracellular Ca2+ concentration in immortalized mouse cardiac endothelial cells (MCECs) and murine microvascular endothelial cells (muMECs). In contrast, an MG-induced rise in intracellular Ca2+ level was observed in primary mouse mesangial cells within 30 s, indicating that the modulation of Ca2+ homeostasis by MG is strictly cell type specific. The formation of the MG-derived advanced glycation end product (AGE) MG-H1 was found to be time and concentration-dependent in MCECs. Likewise, MG pre-incubation for 6 h increased the angiotensin II-evoked Ca2+ entry in MCECs and muMECs which was abrogated by inhibition of Calcium release activated calcium (CRAC) channels with GSK-7975A, but unaffected by an inhibitor specific to TRPA1 channels. Quantitative PCR analysis revealed that MG pre-treatment did not affect expression of the genes encoding the angiotensin receptors AT1R (Agtr 1a & Agtr 1b), Trpa1 nor Orai1, Orai2, Orai3, Stim1, Stim2 and Saraf which operate as constituents or regulators of CRAC channels and store-operated Ca2+ entry (SOCE) in other cell types. Together, our results show that long-term MG stimulation leads to the formation of glycation end products, which facilitates the agonist-evoked Ca2+ entry in endothelial cells, and this could be a new pathway that might lead to MG-evoked vasoregression observed in diabetic vasculopathies.  相似文献   

13.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

14.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

15.
Store-operated Ca2+ channels (SOCs) are activated by depletion of intracellular Ca2+ stores following agonist-mediated Ca2+ release. Previously we demonstrated that Ca2+ influx through SOCs elicits exocytosis efficiently in pancreatic duct epithelial cells (PDEC). Here we describe the biophysical, pharmacological, and molecular properties of the duct epithelial SOCs using Ca2+ imaging, whole-cell patch-clamp, and molecular biology. In PDEC, agonists of purinergic, muscarinic, and adrenergic receptors coupled to phospholipase C activated SOC-mediated Ca2+ influx as Ca2+ was released from intracellular stores. Direct measurement of [Ca2+] in the ER showed that SOCs greatly slowed depletion of the ER. Using IP3 or thapsigargin in the patch pipette elicited inwardly rectifying SOC currents. The currents increased ∼8-fold after removal of extracellular divalent cations, suggesting competitive permeation between mono- and divalent cations. The current was completely blocked by high doses of La3+ and 2-aminoethoxydiphenyl borate (2-APB) but only partially depressed by SKF-96365. In polarized PDEC, SOCs were localized specifically to the basolateral membrane. RT-PCR screening revealed the expression of both STIM and Orai proteins for the formation of SOCs in PDEC. By expression of fluorescent STIM1 and Orai1 proteins in PDEC, we confirmed that colocalization of the two proteins increases after store depletion. In conclusion, basolateral Ca2+ entry through SOCs fills internal Ca2+ stores depleted by external stimuli and will facilitate cellular processes dependent on cytoplasmic Ca2+ such as salt and mucin secretion from the exocrine pancreatic ducts.  相似文献   

16.
Maitotoxin (MTX), a potent marine toxin, activates Ca2+ entry via nonselective cation channels in a wide variety of cells. The identity of the channels involved in MTX action remains unknown. In mammalian sperm, Ca2+ entry through store-operated channels regulates a number of physiological events including the acrosome reaction (AR). Here we report that MTX produced an increase in the intracellular concentration of Ca2+ ([Ca2+]i) in spermatogenic cells that depended on extracellular Ca2+. Ni2+ and SKF96365 diminished the MTX-activated Ca2+ uptake, at concentrations they inhibit store-operated channels, and in a similar manner as they inhibit the Ca2+ influx activated following depletion of intracellular stores by thapsigargin (Tpg). In addition, MTX significantly increased [Ca2+]i in single mature sperm and effectively induced the AR with a half-maximal concentration (ED50) of approximately 1.1 nM. Notably, SKF96365 similarly inhibited the MTX-induced increase in sperm [Ca2+]i and the AR triggered by the toxin, Tpg and zona pellucida. These results suggest that putative MTX-activated channels may be involved in the Ca2+ influx required for mouse sperm AR.  相似文献   

17.
Regulation of critical cellular functions, including Ca2+-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca2+ signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca2+]i due to intracellular Ca2+ release and Ca2+ influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca2+]i increase as well as activation of NFAT in cells such as lymphocytes, RBL and mast cells, both Orai1-STIM1 and TRPC1-STIM1 channels contribute to [Ca2+]i increases in human submandibular gland (HSG) cells. However, only Orai1-mediated Ca2+ entry regulates the activation of NFAT in HSG cells. Since both TRPC1 and Orai1 are activated following internal Ca2+ store depletion in these cells, it is not clear how the cells decode individual Ca2+ signals generated by the two channels for the regulation of specific cellular functions. Here we have examined the contributions of Orai1 and TRPC1 to carbachol (CCh)-induced [Ca2+]i signals and activation of NFAT in single cells. We report that Orai1-mediated Ca2+ entry generates [Ca2+]i oscillations at different [CCh], ranging from very low to high. In contrast, TRPC1-mediated Ca2+ entry generates sustained [Ca2+]i elevation at high [CCh] and contributes to frequency of [Ca2+]i oscillations at lower [agonist]. More importantly, the two channels are coupled to activation of distinct Ca2+ dependent gene expression pathways, consistent with the different patterns of [Ca2+]i signals mediated by them. Nuclear translocation of NFAT and NFAT-dependent gene expression display “all-or-none” activation that is exclusively driven by local [Ca2+]i generated by Orai1, independent of global [Ca2+]i changes or TRPC1-mediated Ca2+ entry. In contrast, Ca2+ entry via TRPC1 primarily regulates NFκB-mediated gene expression. Together, these findings reveal that Orai1 and TRPC1 mediate distinct local and global Ca2+ signals following agonist stimulation of cells, which determine the functional specificity of the channels in activating different Ca2+-dependent gene expression pathways.  相似文献   

18.
Large-conductance Ca2+-dependent K+ (BKCa) channels are activated by intracellular Ca2+ and membrane depolarization in an allosteric manner. We investigated the pharmacological and biophysical characteristics of a BKCa-type K+ channel in androgen-dependent LNCaP (lymph node carcinoma of the prostate) cells with novel functional properties, here termed BKL. K+ selectivity, high conductance, activation by Mg2+ or NS1619, and inhibition by paxilline and penitrem A largely resembled the properties of recombinant BKCa channels. However, unlike conventional BKCa channels, BKL channels activated in the absence of free cytosolic Ca2+ at physiological membrane potentials; the half-maximal activation voltage was shifted by about −100 mV compared with BKCa channels. Half-maximal Ca2+-dependent activation was observed at 0.4 μM for BKL (at −20 mV) and at 4.1 μM for BKCa channels (at +50 mV). Heterologous expression of hSlo1 in LNCaP cells increased the BKL conductance. Expression of hSlo-β1 in LNCaP cells shifted voltage-dependent activation to values between that of BKL and BKCa channels and reduced the slope of the Popen (open probability)-voltage curve. We propose that LNCaP cells harbor a so far unknown type of BKCa subunit, which is responsible for the BKL phenotype in a dominant manner. BKL-like channels are also expressed in the human breast cancer cell line T47D. In addition, functional expression of BKL in LNCaP cells is regulated by serum-derived factors, however not by androgens.  相似文献   

19.
20.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号