首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arylamine N-acetyltransferase (NAT) enzymes are widespread in nature. They serve to acetylate xenobiotics and/or endogenous substrates using acetyl coenzyme A (CoA) as a cofactor. Conservation of the architecture of the NAT enzyme family from mammals to bacteria has been demonstrated by a series of prokaryotic NAT structures, together with the recently reported structure of human NAT1. We report here the cloning, purification, kinetic characterisation and crystallographic structure determination of NAT from Mycobacterium marinum, a close relative of the pathogenic Mycobacterium tuberculosis. We have also determined the structure of M. marinum NAT in complex with CoA, shedding the first light on cofactor recognition in prokaryotic NATs. Surprisingly, the principal CoA recognition site in M. marinum NAT is located some 30 Å from the site of CoA recognition in the recently deposited structure of human NAT2 bound to CoA. The structure explains the Ping-Pong Bi-Bi reaction mechanism of NAT enzymes and suggests mechanisms by which the acetylated enzyme intermediate may be protected. Recognition of CoA in a much wider groove in prokaryotic NATs suggests that this subfamily may accommodate larger substrates than is the case for human NATs and may assist in the identification of potential endogenous substrates. It also suggests the cofactor-binding site as a unique subsite to target in drug design directed against NAT in mycobacteria.  相似文献   

2.
3.
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125–129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.  相似文献   

4.
Gibberellins are ent-kaurene-derived diterpenoid phytohormones produced by plants, fungi, and bacteria. The distinct gibberellin biosynthetic pathways in plants and fungi are known, but not that in bacteria. Plants typically use two diterpene synthases to form ent-kaurene, while fungi use only a single bifunctional diterpene synthase. We demonstrate here that Bradyrhizobium japonicum encodes separate ent-copalyl diphosphate and ent-kaurene synthases. These are found in an operon whose enzymatic composition indicates that gibberellin biosynthesis in bacteria represents a third independently assembled pathway relative to plants and fungi. Nevertheless, sequence comparisons also suggest potential homology between diterpene synthases from bacteria, plants, and fungi.  相似文献   

5.
Ascorbic acid or vitamin C is a wide spectrum antioxidant and plays a crucial role in a many metal-containing enzymes essential for humans, which are unable to synthesize the vitamin C and must obtain it from dietary sources. Ascorbic acid is transported by sodium-coupled ascorbic acid transporters or SVCTs in humans. However, little information is available about the nucleobase–ascorbate transporters (NATs) in tomato (Solanum lycopersicum). In the current study, we identified 12 NAT genes by screening SGN genome databases in tomato. A complete overview of this gene family in tomato is presented, including gene structures, chromosome distribution and localization, phylogenies, motif analysis and expression profiles. The SlNAT genes contained 14 exons, mostly, and dispersed on all the chromosomes except chromosome 8 and 9. All the SlNATs were located to plasma membrane, chloroplast thylakoid membrane, Golgi body, and endoplasmic reticulum (membrane). The phylogenetic tree showed that the plant NATs were divided into 4 clades, well-supported by the distribution of conserved motifs, and the SlNAT proteins shared higher similarity and clustered more closely with AtNAT proteins. Furthermore, the expression profiles of SlNAT genes in various organs showed 9 out of 12 SlNAT genes were constituently expression with differential expression levels under normal growth conditions. Our systematic analysis will provide a useful platform for molecular clone and functional identification of NAT genes in tomato and probably other Solanaceae plants.  相似文献   

6.
Coral disease outbreaks have increased over the last three decades, but their causal agents remain mostly unclear (e.g., bacteria, viruses, fungi, protists). This study details a 14‐month‐long survey of coral colonies in which observations of the development of disease was observed in nearly half of the sampled colonies. A bimonthly qPCR method was used to quantitatively and qualitatively evaluate Symbiodinium assemblages of tagged colonies, and to detect the presence of Vibrio spp. Firstly, our data showed that predisposition to disease development in general, and, more specifically, infection by Vibrio spp. in Acropora cytherea depended on which clades of Symbiodinium were harbored. In both cases, harboring clade D rather than A was beneficial to the coral host. Secondly, the detection of Vibrio spp. in only colonies that developed disease strongly suggests opportunistic traits of the bacteria. Finally, even if sporadic cases of switching and probably shuffling were observed, this long‐term survey does not suggest specific‐clade recruitment in response to stressors. Altogether, our results demonstrate that the fitness of the coral holobiont depends on its initial consortium of Symbiodinium, which is distinct among colonies, rather than a temporary adaptation achieved through acquiring different Symbiodinium clades.  相似文献   

7.
8.
The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and 13C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.  相似文献   

9.
10.
Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.  相似文献   

11.
Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes.  相似文献   

12.
Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata. To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health.  相似文献   

13.
Prey bacteria shape the community structure of their predators   总被引:1,自引:0,他引:1  
Although predator–prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other''s community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.  相似文献   

14.
Benthic marine invertebrates collected from sub-Arctic regions of northern Norway, were found to be a promising source of novel bioactive compounds against human and fish pathogenic bacteria and fungi. Lyophilized material from seven species of ascidians, six sponges and one soft alcyonid coral were extracted with 60% acidified acetonitrile (ACN). After separation into an ACN-rich phase (ACN-extract) and an aqueous phase, and subsequent solid-phase extraction of the aqueous phase, fractions differing in polarity were obtained and screened for antibacterial and antifungal activities, along with the more lipophilic ACN-extracts. Antimicrobial activity was determined against two Gram-negative, two Gram-positive bacteria, and two strains of fungi. Notably, all the invertebrate species in the study showed activity against all four strains of bacteria and the two strains of fungi. In general, the aqueous fractions displayed highest antimicrobial activity, and the most potent extracts were obtained from the colonial ascidian Synoicum pulmonaria which displayed activity against bacteria and fungi at a concentration of 0.02 mg/ml; the lowest concentration tested.  相似文献   

15.
Zwittermicin A is a novel antibiotic produced by Bacillus cereus UW85, which suppresses certain plant diseases in the laboratory and in the field. We developed a rapid method for large-scale purification of zwittermicin A and then studied the in vitro activity of zwittermicin A against bacteria, fungi, and protists. Zwittermicin A was highly active against the Oomycetes and their relatives, the algal protists, and had moderate activity against diverse Gram-negative bacteria and certain Gram-positive bacteria as well as against a wide range of plant pathogenic fungi. Zwittermicin A was more active against bacteria and fungi at pH 7–8 than at pH 5–6. When zwittermicin A was combined with kanosamine, another antibiotic produced by B. cereus, the two acted synergistically against Escherichia coli and additively against Phytophthora medicaginis, an Oomycete. The results indicate that there are diverse potential applications of this new class of antibiotic. Received: 1 December 1997 / Accepted: 9 January 1998  相似文献   

16.

Background

Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species’ association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment.

Results

Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance.

Conclusions

G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1422-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
Polygonum aviculare (Polygonaceae) is an herb commonly distributed in Mediterranean coastal regions in Egypt and used in folkloric medicine. Organic and aqueous solvent extracts and fractions of P. aviculare were investigated for antimicrobial activities on several microorganisms including bacteria and fungi. Phytochemical constituents of air-dried powered plant parts were extracted using aqueous and organic solvents (acetone, ethanol, chloroform and water). Antimicrobial activity of the concentrated extracts was evaluated by determination of the diameter of inhibition zone against both Gram-negative and Gram-positive bacteria and fungi using paper disc diffusion method.Results of the phytochemical studies revealed the presence of tannins, saponins, flavonoids, alkaloids and sesquiterpenes and the extracts were active against both Gram-negative and Gram-positive bacteria. Chloroform extract gave very good and excellent antimicrobial activity against all tested bacteria and good activity against all tested fungi except Candida albicans. Structural spectroscopic analysis that was carried out on the active substances in the chloroform extract led to the identification of panicudine (6-hydroxy-11-deoxy-13 dehydrohetisane).Evaluation of the antimicrobial activity of panicudine indicated significant activity against all tested Gram-negative and Gram-positive organisms. Panicudine displayed considerable activity against the tested fungi with the exception of C. albicans. Antimicrobial activity of the extracts was unaffected after exposure to different heat treatments, but was reduced at alkaline pH. Studies of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panicudine on the tested organisms showed that the lowest MIC and the MBC were demonstrated against Salmonella paratyphi, Bacillus subtilis and Salmonella typhi and the highest MIC and MBC were against Staphylococcus aureus.  相似文献   

18.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

19.
Here, we describe a detailed procedure to efficiently and directly deliver Haemophilus influenzaeinto the lower respiratory tracts of mice. We demonstrate the procedure for preparing H. influenzae inoculum, intra-tracheal instillation of H. influenzae into the lung, collection of broncho-alveolar lavage fluid (BALF), analysis of immune cells in the BALF, and RNA isolation for differential gene expression analysis. This procedure can be used to study the lung inflammatory response to any bacteria, virus or fungi. Direct tracheal instillation is mostly preferred over intranasal or aerosol inhalation procedures because it more efficiently delivers the bacterial inoculum into the lower respiratory tract with less ambiguity.  相似文献   

20.
Invertebrates mount a sophisticated immune response with the potential to exhibit a form of immune memory through ‘priming’. Increased immune protection following early exposure to bacteria has been found both later in life (within generation priming) and in the next generation (transgeneration priming) in a number of invertebrates. However, it is unclear how general immune priming is and whether immune priming occurs in response to different parasites, including viruses. Here, using Plodia interpuctella (Lepidoptera) and its natural DNA virus, Plodia interpunctella granulosis virus, we find evidence for both within generation and transgeneration immune priming. Individuals previously exposed to low doses of virus, as well as the offspring of exposed individuals, are subsequently less susceptible to viral challenge. Relatively little is known about the mechanisms that underpin viral immunity but it is probable that the viral immune response is somewhat different to that of bacteria. We show that immune priming may, however, be a characteristic of both responses, mediated through different mechanisms, suggesting that immune memory may be a general phenomenon of insect immunity. This is important because immune priming may influence both host–parasite population and evolutionary dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号