首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capacitative Ca(2+) entry stimulates cAMP synthesis in mouse parotid acini, suggesting that one of the Ca(2+)-sensitive adenylyl cyclases (AC1 or AC8) may play an important role in the regulation of parotid function (Watson, E. L., Wu, Z., Jacobson, K. L., Storm, D. R., Singh, J. C., and Ott, S. M. (1998) Am. J. Physiol. 274, C557-C565). To evaluate the role of AC1 and AC8 in Ca(2+) stimulation of cAMP synthesis in parotid cells, acini were isolated from AC1 mutant (AC1-KO) and AC8 mutant (AC8-KO) mice and analyzed for Ca(2+) stimulation of intracellular cAMP levels. Although Ca(2+) stimulation of intracellular cAMP levels in acini from AC1-KO mice was indistinguishable from wild type mice, acini from AC8-KO mice showed no Ca(2+)-stimulated cAMP accumulation. This indicates that AC8, but not AC1, plays a major role in coupling Ca(2+) signals to cAMP synthesis in parotid acini. Interestingly, treatment of acini from AC8-KO mice with agents, i.e. carbachol and thapsigargin that increase intracellular Ca(2+), lowered cAMP levels. This decrease was dependent upon Ca(2+) influx and independent of phosphodiesterase activation. Immunoblot analysis revealed that AC5/6 and AC3 are expressed in parotid glands. Inhibition of calmodulin (CaM) kinase II with KN-62, or inclusion of the CaM inhibitor, calmidazolium, did not prevent agonist-induced inhibition of stimulated cAMP accumulation. In vitro studies revealed that Ca(2+), independently of CaM, inhibited isoproterenol-stimulated AC. Data suggest that agonist augmentation of stimulated cAMP levels is due to activation of AC8 in mouse parotid acini, and strongly support a role for AC5/6 in the inhibition of stimulated cAMP levels.  相似文献   

2.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   

3.
Adenylyl cyclase type 5 (AC5) was described as major cardiac AC isoform. The knockout of AC5 (AC5KO) exerted cardioprotective effects in heart failure. Our study explored the impact of AC5KO on mouse heart AC activities and evaluated putative AC5-selective inhibitors. In cardiac membranes from AC5KO mice, basal AC activity was decreased, while AC stimulation was intact. The putative AC5-selective P-site inhibitors SQ22,536 [9-(tetra-hydro-2-furanyl)-9H-purin-6-amine], vidarabine (9-β-D-arabinosyladenine) and NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] inhibited recombinant AC5 more potently than AC2 and AC1, but selectivity was only modest (∼4-40-fold). These compounds inhibited cardiac AC from WT and AC5KO mice with similar potencies. In conclusion, AC regulation in AC5KO hearts was unimpaired, questioning the supposed dominant role of AC5 in the heart. Moreover, the AC inhibitors SQ22,536, NKY80 and vidarabine lack adequate selectivity for AC5 and, therefore, do not present suitable tools to study AC5-specific functions.  相似文献   

4.
Despite numerous discoveries from genetically engineered mice, relatively few have been translated to the bedside, mainly because it is difficult to translate from genes to drugs. This investigation examines an antiviral drug, which also has an action to selectively inhibit type 5 adenylyl cyclase (AC5), a pharmaceutical correlate of the AC5 knockout (KO) model, which exhibits longevity and stress resistance. Our objective was to examine the extent to which pretreatment with this drug, adenine 9-β-d-arabinofuranoside (Ara-A), favorably ameliorates the development of heart failure (HF). Ara-A exhibited selective inhibition for AC5 compared with the other major cardiac AC isoform, AC6, i.e., it reduced AC activity significantly in AC5 transgenic (Tg) mice, but not in AC5KO mice and had little effect in either wild-type or AC6Tg mice. Permanent coronary artery occlusion for 3 wk in C57Bl/6 mice increased mortality and induced HF in survivors, as reflected by reduced cardiac function, while increasing cardiac fibrosis. The AC5 inhibitor Ara-A significantly improved all of these end points and also ameliorated chronic isoproterenol-induced cardiomyopathy. As with the AC5KO mice, Ara-A increased mitogen/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) phosphorylation. A MEK inhibitor abolished the beneficial effects of the AC5 inhibitor in the HF model, indicating the involvement of the downstream MEK-ERK pathway of AC5. Our data suggest that pharmacological AC5 inhibition may serve as a new therapeutic approach for HF.  相似文献   

5.
The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2(-/-), TLR4(-/-) and MyD88(-/-) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2(-/-), TLR4(-/-) and MyD88(-/-) mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88(-/-) mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1(+low) cells migration compared with the knockout mice and decreased in GR1(+high) cells migration into the peritoneal cavity. The TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.  相似文献   

6.
Airway inflammation and mucus hyperproduction play the central role in the development of asthma, although the mechanisms remain unclear. The aquaporin (AQP)‐5 may be involved in the process due to its contribution to the volume of liquid secreted from the airways. The present study firstly found the overexpression of AQP5 in the airway epithelium and submucosal glands of asthmatics. Furthermore, we aimed at evaluating the role of AQP5 in airway inflammation and mucous hyperproductions during chronic allergic responses to house dust mite (HDM). Bronchoalveolar lavage levels of interleukin (IL)‐2, IL‐4, IL‐10, interferon‐γ and Mucin 5AC (MUC5AC), and number of peribronchial and perivascular cells were measured in AQP5 wild‐type and AQP5 knockout (KO) mice. We found that HDM induced airway inflammation, lung Th2 cell accumulation and mucin hypersecretion in C57BL/6 mice rather than AQP5 KO mice. Expression of MUC5AC and MUC5B proteins and genes in the lung tissue was significantly lower in AQP5 KO mice. Thus, our results implicate involvement of AQP5 in the development of airway inflammation and mucous hyperproduction during chronic asthma.  相似文献   

7.
Type 5 adenylyl cyclase (AC5) is highly concentrated in the dorsal striatum and nucleus accumbens (NAc), two brain areas which have been implicated in motor function, reward, and emotion. Here we demonstrate that mice lacking AC5 (AC5-/-) display strong reductions in anxiety-like behavior in several paradigms. This anxiolytic behavior in AC5-/- mice was reduced by the D(1) receptor antagonist SCH23390 and enhanced by the D(1) dopamine receptor agonist, dihydrexidine (DHX). DHX-stimulated c-fos induction in AC5-/- mice was blunted in the dorso-lateral striatum, but it was overactivated in the dorso-medial striatum and NAc. The siRNA-mediated inhibition of AC5 levels within the NAc was sufficient to produce an anxiolytic-like response. Microarray and RT-PCR analyses revealed an up-regulation of prodynorphin and down-regulation of cholecystokinin (CCK) in the NAc of AC5-/- mice. Administration of nor-binaltorphimine (a kappa opioid receptor antagonist) or CCK-8s (a CCK receptor agonist) reversed the anxiolytic-like behavior exhibited by AC5-/- mutants. Taken together, these results suggest an essential role of AC5 in the NAc for maintaining normal levels of anxiety.  相似文献   

8.
These preclinical studies aimed to 1) increase our understanding the dietary induction of nonalcoholic steatohepatitis (NASH), and, 2) further explore the utility and mechanisms of glucagon-like peptide-1 receptor (GLP-1R) agonism in NASH. We compared the effects of a high trans-fat (HTF) or high lard fat (HLF) diet on key facets of nonalcoholic fatty liver disease (NAFLD)/NASH in Lep(ob)/Lep(ob) and C57BL6J (B6) mice. Although HLF-fed mice experienced overall greater gains in weight and adiposity, the addition of trans-fat better mirrored pathophysiological features of NASH (e.g., hepatomegaly, hepatic lipid, and fibrosis). Administration of AC3174, an exenatide analog, and GLP-1R agonist to Lep(ob)/Lep(ob) and B6 ameliorated hepatic endpoints in both dietary models. Next, we assessed whether AC3174-mediated improvements in diet-induced NASH were solely due to weight loss in HTF-fed mice. AC3174-treatment significantly reduced body weight (8.3%), liver mass (14.2%), liver lipid (12.9%), plasma alanine aminotransferase, and triglycerides, whereas a calorie-restricted, weight-matched group demonstrated only modest nonsignificant reductions in liver mass (9%) and liver lipid (5.1%) relative to controls. Treatment of GLP-1R-deficient (GLP-1RKO) mice with AC3174 had no effect on body weight, adiposity, liver or plasma indices pointing to the GLP-1R-dependence of AC3174's effects. Interestingly, the role of endogenous GLP-1Rs in NASH merits further exploration as the GLP-1RKO model was protected from the deleterious hepatic effects of HTF. Our pharmacological data further support the clinical evaluation of the utility of GLP-1R agonists for treatment of NASH.  相似文献   

9.
Acorus calamus (AC), is an herbal medicine commonly used as traditional practice in pharmacological applications. Present study initiated was evident to proof the hepatoprotective and nephroprotective activity with supporting histopathological status of kidneys and liver. Investigation done with the 5% (w/v) of AC dissolved in tap water (50 g/l) given for 15 days compared with control tap water to 5-7 week old C57Bl/6 mice both sexes. Renal function, liver function, biochemical and complete blood count was evaluated. AC significantly reduced food intake, body weight, also plasma concentration of electrolytes such as Na+, K+, Ca2+, were reduced as the excretion of electrolytes were increased in urine, significantly increased Fluid Intake, with Urinary urea, Urinary creatinine, Glomerular Filtration Rate, creatinine clearance, High-density lipoproteins, Mean Corpuscular Volume. The biochemical findings showed the hepatoprotective and histopathological changes showed the nephroprotective nature of AC by normal structure with no necrosis.  相似文献   

10.
长链非编码RNA(long non-coding RNA,lncRNA)是一类长度大于200 nt、不具有蛋白编码潜能的RNA分子.在细胞生长发育、物质代谢以及疾病等的发生发展过程中起关键调控作用,但在蜕膜化相关领域研究报道较少.为了探究lincRNA AC027700.1在早孕小鼠子宫内膜中的表达规律,初步探讨AC0...  相似文献   

11.
There is evidence that hypothalamic norepinephrine (NE) plays a role in the control of appetite in the rat. Using specific and sensitive radioenzymatic assays, we determined if there was a difference in the tissue (hypothalamus, cerebral cortex and kidney) concentration of NE or of dopamine (DA) in mice with the hereditary obese-hyperglycemic syndrome (ob/ob) and their normal weight littermates, both when they were in the rapid growth phase (2--3 months of age) and when they were mature (6--7 months of age). The concentration of NE was similar in the cerebral cortex of obese and normal mice and in the kidneys of obese and normal mice. The concentration of DA was similar in the hypothalamus of obese and normal mice. The concentration of DA was similar in the hypothalamus of obese and normal mice and in the cerebral cortex of obese and normal mice. These observations support the concept that alterations in hypothalamic NE may play a role in the obesity of ob/ob mice.  相似文献   

12.
Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.  相似文献   

13.
It has been proposed that the "normal" stimulation of the immune system that occurs from interactions with environmental stimuli, whether infectious or dietary, is necessary for the initiation and/or continuation of autoimmunity. We tested this hypothesis by deriving a group of MRL-lpr mice into a germfree (GF) environment. At 5 mo of age, no differences between GF and conventional MRL-lpr mice were noted in lymphoproliferation, flow cytometric analysis of lymph node cells (LN), or histologic analysis of the kidneys. Autoantibody levels were comparably elevated in both groups. A second experiment tested the role of residual environmental stimuli by contrasting GF mice fed either a low m.w., ultrafiltered Ag-free (GF-AF) diet or an autoclaved natural ingredient diet (GF-NI). At 4 mo of age, both groups showed extensive lymphoproliferation and aberrant T cell formation, although the GF-AF mice had approximately 50% smaller LNs compared with sex-matched GF-NI controls. Autoantibody formation was present in both groups. Histologic analysis of the kidneys revealed that GF-AF mice had much lower levels of nephritis, while immunofluorescence analysis demonstrated no difference in Ig deposits but did reveal a paucity of C3 deposition in the kidneys of GF-AF mice. These data do not support a role for infectious agents in the induction of lymphoproliferation and B cell autoimmunity in MRL-lpr mice. Furthermore, they suggest that autoantibodies do not originate from B cells that were initially committed to exogenous Ags. They do suggest a possible contributory role for dietary exposure in the extent of lymphoproliferation and development of nephritis in this strain.  相似文献   

14.
Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this "trapping" effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity.  相似文献   

15.
The anterior commissure (AC) is one of the important commissure projections in the brain that conveys information from one side of the nervous system to the other. During development, the axons from the anterior AC (aAC) and the posterior AC (pAC) course in the same dorsoventral plane and converge into a common fascicle for midline crossing. Previously, we reported that Tsukushi (TSK), a member of the secreted small leucine rich repeat proteoglycan family, functions as a key coordinator of multiple pathways outside of cells through the regulation of an extracellular signaling network. Here, we show evidence that TSK is critical for the formation of the AC. In mice lacking TSK, the aAC and the pAC axons fail to cross the midline, leading to an almost total absence of the AC in adult mice. DiI labeling indicated that the aAC axons grew out from the anterior olfactory nucleus and migrated along normal pathways but never crossed the midline. Therefore, we have uncovered a crucial role for TSK for AC formation in the mouse brain.  相似文献   

16.
Lupus nephritis is characterized by immune complex deposition and infiltration of inflammatory cells into the kidney including Ab-producing cells (AbPCs). Although AbPCs play a central role in the pathogenesis of immune complex glomerulonephritis in lupus, the specificity and pathogenic role of AbPCs infiltrating into the kidneys in lupus are poorly understood. To characterize AbPCs present in lupus kidneys, we isolated AbPCs from diseased MRL/MpJ-Faslpr (MRL/lpr) mouse kidneys. ELISPOT assays, using glomerular Ag (GA) extracts as Ag, demonstrated significant enhancement of anti-GA AbPCs in the kidneys as compared in peripheral blood or spleen of the same mouse. We isolated hybridomas with anti-GA specificity from MRL/lpr mouse kidneys. All the anti-GA mAbs had polyreactive binding to ssDNA, dsDNA, and IgG (i.e., rheumatoid factor), but not to histones or Sm. Sequence analysis of anti-GA Abs suggested the occurrence of somatic mutations and amino acid replacement in complementarity-determining regions with a high replacement to silent ratio resulting in charged amino acids. Intravenous administration of the monoclonal anti-GA Abs into BALB/c mice resulted in graded deposition in glomeruli paralleling their ELISA anti-GA reactivity. These results suggest that AbPCs infiltrating the kidneys in MRL/lpr mice accumulate as a result of Ag selection and likely play a pathologic role in lupus nephritis.  相似文献   

17.
Wong ST  Trinh K  Hacker B  Chan GC  Lowe G  Gaggar A  Xia Z  Gold GH  Storm DR 《Neuron》2000,27(3):487-497
Cyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia. To evaluate the role of AC3 in olfactory responses, we disrupted the gene for AC3 in mice. Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia. Furthermore, AC3 mutants failed several olfaction-based behavioral tests, indicating that AC3 and cAMP signaling are critical for olfactory-dependent behavior.  相似文献   

18.
Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 μg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.  相似文献   

19.
Previously we have shown that kallikreins (klks) play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs) as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1) gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 106 hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN) and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.  相似文献   

20.
Both lipids and inflammation play important roles in the progression of kidney disease. This study was designed to investigate whether inflammation exacerbates lipid accumulation via LDL receptors (LDLr), thereby causing renal injury in C57BL/6J mice, apolipoprotein E (ApoE) knockout (KO) mice, and ApoE/CD36/scavenger receptor A triple KO mice. The mice were given a subcutaneous casein injection to induce inflammatory stress. After 14 wk, terminal blood samples were taken for renal function, lipid profiles, amyloid A (SAA), and IL-6 assays. Lipid accumulation in kidneys was visualized by oil red O staining. Fibrogenic molecule expression in kidneys was examined. There was a significant increase in serum SAA and IL-6 in the all casein-injected mice compared with respective controls. Casein injection reduced serum total cholesterol, LDL cholesterol, and HDL cholesterol and caused lipid accumulation in kidneys from three types of mice. The expression of LDLr and its regulatory proteins sterol-responsive element-binding protein (SREBP) 2 and SREBP cleavage-activating protein (SCAP) were upregulated in inflamed mice compared with controls. Casein injection induced renal fibrosis accompanied by increased expression of fibrogenic molecules in the triple KO mice. These data imply that inflammation exacerbates lipid accumulation in the kidney by diverting lipid from the plasma to the kidney via the SCAP-SREBP2-LDLr pathway and causing renal injury. Low blood cholesterol levels, resulting from inflammation, may be associated with high risk for chronic renal fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号