首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   

2.
The immune mechanisms whereby malaria parasites are eliminated by the human host or how they may avoid the immune response are poorly understood. Individuals living in malaria-endemic areas gradually acquire immunity. It is well established that this immunity involves both cell-mediated and humoral mechanisms and that T cells are the major regulators in both these events. The existence of functionally distinct P. falciparum-specific CD4+ T-cell subsets in humans has been shown in several studies. However, in contrast to what is the case in murine models there is no definitive link between the activation of various T cells and the course of human P. falciparum blood-stage infection. In the present paper we will review recent findings which illustrate how the balance between functionally different T-cell subsets affects the development of malaria immunity but also may contribute to its pathogenicity. An example of the latter is the deposition of IgE-containing immune complexes in small vessels, probably leading to local overproduction of tumor-necrosis factor (TNF), a pathogenic factor in malaria.  相似文献   

3.
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.  相似文献   

4.
Infection with malaria parasites frequently induces total immune suppression, which makes it difficult for the host to maintain long-lasting immunity. Here we show that depletion of CD4(+)CD25(+) regulatory T cells (T(reg)) protects mice from death when infected with a lethal strain of Plasmodium yoelii, and that this protection is associated with an increased T-cell responsiveness against parasite-derived antigens. These results suggest that activation of T(reg) cells contributes to immune suppression during malaria infection, and helps malaria parasites to escape from host immune responses.  相似文献   

5.
T cells are critical mediators of immunity to the pre-erythrocytic stages of malaria parasites. In this review, we survey the role of the various T cell subsets in combating the pre-erythrocytic stages; in particular, the role of NK T cells. Moreover, we show how studies using malaria models have revealed a unique behavior of NK T cells, namely the bridging of innate and adaptive immunity.  相似文献   

6.
T cells from different subsets play a major role in protective immunity against pre-erythrocytic stages of malaria parasites. Exposure of humans and animals to malaria sporozoites induces (alphabeta CD8(+) and CD4(+) T cells specific for antigens expressed in pre-erythrocytic stages of Plasmodium. These T cells inhibit parasite development in the liver, and immunization with subunit vaccines expressing the respective antigenic moieties confers protection against sporozoite challenge. gammadelta and natural killer T cells can also play a role in protective immunity. Recent studies with mice transgenic for the alphabeta T-cell receptor have revealed the existence of complex mechanisms regulating the induction and development of these responses.  相似文献   

7.
A key suppressor role has recently been ascribed to the natural CD4+CD25+ regulatory T cells (Treg), the removal of which leads to the development of autoimmune disease and aggravated pathogen-induced inflammation in otherwise normal hosts. The repertoire of antigen specificities of Treg is as broad as that of naive T cells, recognizing both self and non-self antigens, enabling Treg to control a broad range of immune responses. Although widely acknowledged to play a role in the maintenance of self-tolerance, recent studies indicate that Treg can be activated and expanded against bacterial, viral and parasite antigens in vivo. Such pathogen-specific Treg can prevent infection-induced immunopathology but may also increase the load of infection and prolong pathogen persistence by suppressing protective immune responses. This review discusses the role of Treg in the prevention of exaggerated inflammation favoring chronicity in bacterial or fungal infections and latency in viral infections. Special attention is given to the role of Treg in the modulation of gastric inflammation induced by Helicobacter pylori infection. Findings in both experimentally infected mice and humans with natural infection indicate that Treg are important in protecting the H. pylori-infected host against excessive gastric inflammation and disease symptoms but on the negative side promote bacterial colonization at the gastric and duodenal mucosa which may increase the risk in H. pylori-infected individuals to develop duodenal ulcers.  相似文献   

8.
Interleukin-21 (IL-21)+CD4+ T cells are involved in the immune response against hepatitis B virus (HBV) by secreting IL-21. However, the role of IL-21+CD4+ T cells in the immune response against chronic hepatitis C (CHC) virus infection is poorly understood. This study aimed to investigate the role of IL-21+CD4+ T cells in CHC patients and the potential mechanisms. The study subjects included nineteen CHC patients who were grouped by viral load (low, < 106 RNA copies/ml, n = 8; high, > 106 RNA copies/ml, n = 11). The peripheral frequency of HCV-specific IL-21+CD4+ T cells was higher in the low viral load group and was negatively correlated with the serum HCV RNA viral load in all CHC patients. Meanwhile, IL-21+ cells accumulated in the liver in the low viral load group. In vitro, IL-21 treatment increased the expression of proliferation markers and cytolytic molecules on HCV-specific CD8+ T cells. In summary, these findings suggest that HCV-specific IL-21+CD4+ T cells might contribute to HCV control by rescuing HCV-specific CD8+ T cells in CHC patients.  相似文献   

9.
CD4(+) T cells co-expressing CD25 (CD4(+)CD25(+) T cells) have been identified as immunoregulatory suppressors modulating autoimmune response. Beside that, autoimmune response was supposed to be associated with malaria infection. Based on these data, we hypothesised that CD4(+)CD25(+) T cells may influence protective immunity to malaria parasites, while suppressing autoimmune response arising throughout the course of malarial infection. To test this possibility, we evaluated the kinetics of CD4(+)CD25(+) T cells during malaria infection and investigated the influence of CD25 depletion by anti-mouse CD25 monoclonal antibody (PC61) on the infection, using a mouse model of premunition to Plasmodium berghei NK65 malaria. The results showed that, during exacerbation of P. berghei NK65 infection, the proportion of CD4(+)CD25(+) T cells among CD4(+) T cells decreased, although that of CD4(+) T cells increased. CD25 depletion clearly delayed the growth of parasitaemia during parasite challenge, particularly in immunised mice. These findings demonstrated that CD4(+)CD25(+) T cells are able to influence protective immunity underlying premunition to P. berghei NK65 parasites.  相似文献   

10.
Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed.  相似文献   

11.
We examined a potential role of gammadelta T cells in protective immunity to blood-stage Plasmodium berghei XAT infection. Plasmodium berghei XAT is an attenuated variant of the lethal strain P. berghei NK65 and its infection is self-resolving in immune competent mice. To determine whether gammadelta T cells are essential for the resolution of P. berghei XAT malaria, mice were depleted of gammadelta T cells with anti-TCRgammadelta antibody treatment. Although mice that had received control antibody resolved infections, mice received anti-TCRgammadelta antibody could not control their infections and eventually died. Spleen cells from infected mice produced IFN-gamma and nitric oxide (NO) within the first week of infection, however, levels of IFN-gamma and NO in gammadelta T cell-depleted mice were significantly lower than in control mice. To examine whether gammadelta T cells are involved in the antibody production, malarial-specific antibodies of the various isotypes were measured in the sera of gammadelta T cell-depleted mice and control mice. Serum levels of IgG2a, which was known to be a protective antibody in P. berghei XAT malaria, were significantly lower in gammadelta T cell-depleted mice than in control mice, whereas levels of IgG1 were comparable to those in control mice. Our results indicated that the presence of the gammadelta T cell subset was essential for resolution of blood-stage P. berghei XAT malaria and played a modulatory role in the development of Th1 response and host defense against this malarial parasites.  相似文献   

12.
Nitric oxide (NO) is involved in the clearance of several types of bacteria, viruses and parasites. Although the roles of NO and CD8+ T cells in the immune response to malaria have been extensively studied, their actual contributions during the blood stages of malaria infection remain unclear.In this work, we corroborate that serum NO levels are not associated with the in vivo elimination of the blood stages of Plasmodium chabaudi AS. In addition, we show that CD8+ T cells exhibit increased apoptosis and up regulate the expression of TNF-α mRNA on day 4 post-infection and IFN-γ and IL-10 mRNA on day 11 post-infection. Interestingly, only the levels of IFN-γ and IL-10 expression are affected when iNOS is inhibited with aminoguanidine (AG), suggesting that NO could be involved in the activation of CD8+ T cells during the blood stages of plasmodium infection.  相似文献   

13.
Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components – a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.  相似文献   

14.
Protection against experimental toxoplasmosis by adoptive immunotherapy   总被引:5,自引:0,他引:5  
The role of humoral and cell-mediated immunity against toxoplasmosis in experimentally infected guinea pigs was examined by using a syngeneic passive transfer system. Serum or spleen and lymph node cells from guinea pigs immune to infection with the RH strain of Toxoplasma gondii conferred partial protection against symptomatic disease in recipient guinea pigs. This result was based on the reduced dissemination or growth of T. gondii parasites from the primary inoculation site to various selected organ sites of the recipients of immune serum or cells. Similar levels of partial protection against disseminated toxoplasmosis occurred in animals infused with cell suspensions enriched for immune T cells, whereas treatment of immune cells with a monoclonal anti-guinea pig T cell antibody plus complement abolished their ability to transfer resistance. These findings provide substantial direct evidence implicating both cellular and humoral components of the immune response as important effector mechanisms in host resistance to toxoplasmosis.  相似文献   

15.
Mice were infected with Plasmodium (P.) yoelii blood-stage parasites. Both the liver and spleen were the sites of inflammation during malarial infection at the beginning of day 7. The major expanding cells were found to be NK1.1(-) intermediate alphabetaTCR (alphabetaTCR(int)) in the liver and spleen, although the population of NK1.1(+) alphabetaTCR(int) cells remained constant or slightly increased. These TCR(int) cells are of extrathymic origin or are generated by an alternative intrathymic pathway and are distinguished from conventional T cells of thymic origin. During malarial infection, the population of conventional T cells did not increase at all. TCR(int) cells purified from the liver of mice which had recovered from P. yoelii infection protected mice from malaria when they were transferred into 6.5-Gy-irradiated mice. Interestingly, the immunity against malaria seemed to disappear as a function of time after recovery, namely, mice which had recovered from malaria 1 year previously again became susceptible to malarial infection. The present results suggest that TCR(int) cells are intimately associated with protection against malarial infection and, therefore, that mice which had recovered from malaria 1 year previously lost such immunity.  相似文献   

16.
Malaria is a vector-borne infectious disease caused by infection with eukaryotic pathogens termed Plasmodium. Epidemiological hallmarks of Plasmodium falciparum malaria are continuous re-infections, over which time the human host may experience several clinical malaria episodes, slow acquisition of partial protection against infection, and its partial decay upon migration away from endemic regions. To overcome the exposure-dependence of naturally acquired immunity and rapidly elicit robust long-term protection are ultimate goals of malaria vaccine development. However, cellular and molecular correlates of naturally acquired immunity against either parasite infection or malarial disease remain elusive. Sero-epidemiological studies consistently suggest that acquired immunity is primarily directed against the asexual blood stages. Here, we review available data on the relationship between immune responses against the Anopheles mosquito-transmitted sporozoite and exo-erythrocytic liver stages and the incidence of malaria. We discuss current limitations and research opportunities, including the identification of additional sporozoite antigens and the use of systematic immune profiling and functional studies in longitudinal cohorts to look for pre-erythrocytic signatures of naturally acquired immunity.  相似文献   

17.
The immune system includes CD4+ regulatory T (T reg) cells that play a role in self-tolerance and demonstrate functional variations that govern immune responses. HHV-6 is an important immunosuppressive virus that completely replicates in vivo and in vitro in only CD4+ T cells. However, there have been no reports of the specific T-cell subpopulation that permits the replication of this virus. Here, we evaluated the infectivity of HHV-6 to specific T-cell populations such as CD4+CD25 high, which includes the majority of T reg cells, and CD4+CD25(-). These cells were isolated from peripheral blood and then expanded. The expanded cell fractions were then infected with the HHV-6 variant B strain, and the spreads of infected cells were evaluated by immunofluorescence. Viral growth was also quantified by real-time PCR. The effects of virus infection on cytokine production from these T-cell subsets were examined using ELISA. Our results revealed that both these fractions permitted complete HHV-6 replication. Virus infection enhanced the production of both Th1- and Th2-type cytokines from CD4+CD25(-) T cells; however, only Th2-type cytokine release was augmented from viral-infected CD4+CD25 high T cells. Further, while virusinfected CD4+CD25 high T cells shift their antiviral immunity toward Th2 dominance by producing IL-10, the role of virus-infected CD4+CD25(-) T cells remains obscure.  相似文献   

18.
Individuals living in malaria endemic areas become clinically immune after multiple re-infections over time and remain infected without apparent symptoms. However, it is unclear why a long period is required to gain clinical immunity to malaria, and how such immunity is maintained. Although malaria infection is reported to induce inhibition of immune responses, studies on asymptomatic individuals living in endemic regions of malaria are relatively scarce. We conducted a cross-sectional study of immune responses in asymptomatic school children aged 4–16 years living in an area where Plasmodium falciparum and Schistosoma mansoni infections are co-endemic in Kenya. Peripheral blood mononuclear cells were subjected to flow cytometric analysis and cultured to determine proliferative responses and cytokine production. The proportions of cellular subsets in children positive for P. falciparum infection at the level of microscopy were comparable to the negative children, except for a reduction in central memory-phenotype CD8+ T cells and natural killer cells. In functional studies, the production of cytokines by peripheral blood mononuclear cells in response to P. falciparum crude antigens exhibited strong heterogeneity among children. In addition, production of IL-2 in response to anti-CD3 and anti-CD28 monoclonal antibodies was significantly reduced in P. falciparum-positive children as compared to -negative children, suggesting a state of unresponsiveness. These data suggest that the quality of T cell immune responses is heterogeneous among asymptomatic children living in the endemic region of P. falciparum, and that the responses are generally suppressed by active infection with Plasmodium parasites.  相似文献   

19.
Malaria is still a life-threatening infectious disease that continues to produce 2 million deaths annually. Malaria parasites have acquired immune escape mechanisms and prevent the development of sterile immunity. Regulatory T cells (Tregs) have been reported to contribute to immune evasion during malaria in mice and humans, suggesting that activating Tregs is one of the mechanisms by which malaria parasites subvert host immune systems. However, little is known about how these parasites activate Tregs. We herein show that TLR9 signaling to dendritic cells (DCs) is crucial for activation of Tregs. Infection of mice with the rodent malaria parasite Plasmodium yoelii activates Tregs, leading to enhancement of their suppressive function. In vitro activation of Tregs requires the interaction of DCs with parasites in a TLR9-dependent manner. Furthermore, TLR9(-/-) mice are partially resistant to lethal infection, and this is associated with impaired activation of Tregs and subsequent development of effector T cells. Thus, malaria parasites require TLR9 to activate Tregs for immune escape.  相似文献   

20.
Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60-70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-gamma responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90(-) cells was also enhanced in infected mice. Interestingly, a potent induction of TNF-alpha and IFN-gamma production by CD4+ and CD90(-) lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号