首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The amphiphylic alkyl cation cetyltrimethylammonium inhibits the catalytic activity of soluble and membrane-bound F1 in a noncompetitive fashion. In sonic submitochondrial particles the Dixon plot showed a peculiar pattern with upward deviation at cetyltrimethylammonium concentration higher than 80µM. In membrane-bound F1 the inhibition by cetyltrimethylammonium was potentiated by the F0 inhibitor ologomycin. Cetyltrimethylammonium also inhibited the oligomycin-sensitive proton conductivity in F1-containing particles but was without any effect in F1-depleted particles. Also this inhibitory effect was potentiated by oligomycin. These results indicate functional cooperative interactions between F0 and F1.  相似文献   

3.
Role of thylakoid protein kinases in photosynthetic acclimation   总被引:7,自引:0,他引:7  
Rochaix JD 《FEBS letters》2007,581(15):2768-2775
Photosynthetic organisms are able to adjust to changes in light quality through state transition, a process which leads to a balancing of the light excitation energy between the antennae systems of photosystem II and photosystem I. A genetic approach has been used in Chlamydomonas with the aim of elucidating the signaling chain involved in state transitions. This has led to the identification of a small family of Ser-Thr protein kinases associated with the thylakoid membrane and conserved in algae and land plants. These kinases appear to be involved both in short and long term adaptations to changes in the light environment.  相似文献   

4.
Mikhail A. Galkin 《BBA》2006,1757(3):206-214
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 °C, but not at 37 °C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 °C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 °C, but had little effect at 37 °C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 °C relative to at 37 °C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP.  相似文献   

5.
It was shown before (Wooten, D. C., and Dilley, R. A. (1993) J. Bioenerg. Biomembr. 25, 557–567; Zakharov, S. D., Li, X., Red'ko, T. P., and Dilley, R. A. (1996) J. Bioenerg. Biomembr. 28, 483–493) that pH dependent reversible Ca2+ binding near the N- and C-terminal end of the 8 kDa subunit c modulates ATP synthesis driven by an applied pH jump in chloroplast and E. coli ATP synthase due to closing a proton gate proposed to exist in the F0 H+ channel of the F0F1 ATP synthase. This mechanism has further been investigated with the use of membrane vesicles from mutants of the cyanobacterium Synechocystis 6803. Vesicles from a mutant with serine at position 37 in the hydrophilic loop of the c-subunit replaced by the charged glutamic acid (strain plc 37) has a higher H+/ATP ratio than the wild type and therefore shows ATP synthesis at low values of H +. The presence of 1 mM CaCl2 during the preparation and storage of these vesicles blocked acid–base jump ATP formation when the pH of the acid side (inside) was between pH 5.6 and 7.1, even though the pH of the acid–base jump was thermodynamically in excess of the necessary energy to drive ATP formation at an external pH above 8.28. That is, in the absence of added CaCl2, ATP formation did occur under those conditions. However, when the base stage pH was 7.16 and the acid stage below pH 5.2, ATP was formed when Ca2+ was present. This is consistent with Ca2+ being displaced by H+ ions from the F0 on the inside of the thylakoid membrane at pH values below about 5.5. Vesicles from a mutant with the serine of position 3 replaced by a cysteine apparently already contain some bound Ca2+ to F0. Addition of 1 mM EGTA during preparation and storage of those vesicles shifted the otherwise already low internal pH needed for onset of ATP synthesis to higher values when the external pH was above 8. With both strains it was shown that the Ca2+ binding effect on acid–base induced ATP synthesis occurs above an internal pH of about 5.5. These results were corroborated by 45Ca2+- ligand blot assays on organic solvent soluble preparations containing the 8 kDa F0 subunit c from the S-3-C mutant ATP synthase, which showed 45Ca2+ binding as occurs with the pea chloroplast subunit III. The phosphorylation efficiency (P/2e), at strong light intensity, of Ca2+ and EGTA treated vesicles from both strains were almost equal showing that Ca2+ or EGTA have no other effect on the ATP synthase such as a change in the proton to ATP ratio. The results indicate that the Ca2+ binding to the F0 H+ channel can block H+ flux through the channel at pH values above about 5.5, but below that pH protons apparently displace the bound Ca2+, opening the CF0 H+ channel between the thylakoid lumen and H+ conductive channel.  相似文献   

6.
SolubilizedRhodospirillum rubrum RrF1-ATPase, depleted of loosely bound nucleotides, retains 2.6 mol of tightly bound ATP and ADP/mol of enzyme. Incubation of the depleted RrF1 with Mg2+-ATP or Mg2+-AMP-PNP, followed by passage through two successive Sephadex centrifuge columns, results in retention of a maximal number of 4 mol of tightly bound nucleotides/mol of RrF1. They include 1.5 mol of nonexchangeable ATP, whereas all tightly bound ADP is fully exchangeable. A similar retention of only four out of the six nucleotide binding sites present on CF1 has been observed after its passage through one or two centrifuge columns. These results indicate that the photosynthetic, unlike the respiratory, F1-ATPases have fasterk off constants for two of the Mg-dependent nucleotide binding sites. This could be the reason for the tenfold lower Mg2+ than Ca2+-ATPase activity observed with native RrF1, as with -depleted, activated CF1. An almost complete conversion of both RrF1 and CF1 from Ca2+- to Mg2+-dependent ATPases is obtained upon addition of octylglucoside, at concentrations below its CMC, to the ATPase assay medium. Thus, octylglucoside seems to affect directly the RrF1 and CF1 divalent cation binding site(s), in addition to its proposed role in relieving their inhibition by free Mg2+ ions. The RrF1-ATPase activity is 30-fold more sensitive than CF1 to efrapeptin, and completely resistant to either inhibition or stimulation by the CF1 effector, tentoxin. Octylglucoside decreases the inhibition by efrapeptin and tentoxin, but exposes on CF1 a low-affinity, stimulatory site for tentoxin.Abbreviations: CF1, EcF1, MF1, and TF1, the soluble F1-ATPase from chloroplasts, PE. coli, mitochondria,R. rubrum, and the thermophilic bacterium PS3, respectively: AMP-PNP, adenylyl-, -imidodiphosphate; CMC, critical micellar concentration; DTT, dithiothreitol, LDAO, lauryl dimethylamine oxide.Dedicated to Professor Achim Trebst in honor of this 65th birthday.  相似文献   

7.
Ahmad Z  Senior AE 《FEBS letters》2005,579(2):523-528
alphaArg-376, betaLys-155, and betaArg-182 are catalytically important ATP synthase residues that were proposed to be involved in substrate Pi binding and subsequent steps of ATP synthesis [Senior, A.E., Nadanaciva, S. and Weber, J. (2002) Biochim. Biophys. Acta 1553, 188-211]. Here, it was shown using purified Escherichia coli F(1)-ATPase that whereas Pi protected wild-type from reaction with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, mutations betaK155Q, betaR182Q, betaR182K, and alphaR376Q abolished protection. Therefore, in ATP synthesis initial binding of substrate Pi in open catalytic site betaE is supported by each of these three residues.  相似文献   

8.
H+-FOF1-ATP synthase couples proton flow through its membrane portion, FO, to the synthesis of ATP in its headpiece, F1. Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the ε subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the γ subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced γLys23 with the DELSEED region of subunit β stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit γ rotation which is necessary for the activation.  相似文献   

9.
Leon Bae 《BBA》2009,1787(9):1129-177
Previous work has shown that the essential R210 of subunit a in the Escherichia coli ATP synthase can be switched with a conserved glutamine Q252 with retention of a moderate level of function, that a third mutation P204T enhances this function, and that the arginine Q252R can be replaced by lysine without total loss of activity. In this study, the roles of P204T and R210Q were examined. It was concluded that the threonine in P204T is not directly involved in function since its replacement by alanine did not significantly affect growth properties. Similarly, it was concluded that the glutamine in R210Q is not directly involved with function since replacement by glycine results in significantly enhanced function. Not only did the rate of ATP-driven proton translocation increase, but also the sensitivity of ATP hydrolysis to inhibition by N,N′-dicyclohexylcarbodiimide (DCCD) rose to more than 50%. Finally, mutations at position E219, a residue near the proton pathway, were used to test whether the Arginine-switched mutant uses the normal proton pathway. In a wild type background, the E219K mutant was confirmed to have greater function than the E219Q mutant, as has been shown previously. This same unusual result was observed in the triple mutant background, P204T/R210Q/Q252R, suggesting that the Arginine-switched mutants are using the normal proton pathway from the periplasm.  相似文献   

10.
Summary We previously introduced a flash spectrophotometric method to analyze proton conduction by CF0 in vesicles derived from thylakoid membranes (H. Lill, S. Engelbrecht, G. Schönknecht & W. Junge, 1986,Eur. J. Biochem. 160:627–634). The unit conductance of CF0, as revealed by this technique, was orders of magnitude higher than that theoretically expected for a hydrogen-bonded chain. We scrutinized the validity of this method. Small vesicles were derived from thylakoids by EDTA treatment. The intrinsic electric generators in the membrane were stimulated by short flashes of light and the relaxation of the voltage via ionic channels was measured through electrochromic absorption changes of intrinsic pigments. The voltage decay was stimulated by a statistical model. As the vesicle-size distribution had only a minor influence, the simulation required only two fit parameters, the first proportional to the unit conductance of an active channelG, and the second denoting the average number of active channels per vesiclen. This technique was applied to CF0, the proton channel of the chloroplast ATP synthase, and to gramicidin, serving as a standard. For both channels we found the above two fit parameters physically meaningful. They could be independently varied in predictable wasy, i.e.n by addition of known inhibitors of F0-type proton channels andG via the temperature. for gramicidin, the unit conductance (2.7 pS) was within the range described in the literature. This established the competence of this method for studies on the mechanism of proton conduction by CF0, whose conductance so far has not been accessible to other, more conventional approaches. The time-averaged unit conductance of CF0 was about 1 pS, equivalent to the turnover of 6×105 H+/(CF0·sec) at 100 mV driving force.  相似文献   

11.
On the basis of experiments with singlet quenchers and in agreement with previous data, it is suggested that a population of energetically weakly coupled chlorophylls may play a central role in photoinhibition in vivo and in vitro. In the present study, we have used steady state fluorescence techniques to gain direct evidence for these uncoupled chlorophylls. Due to the presence of their emission maxima, near 650 nm and more prominently in the 670-675 nm interval both chlorophylls b and a seem to be involved. A straightforward mathematical model is developed to describe the data which allows us to conclude that the uncoupled/weakly coupled population size is in the range of 1-3 molecules per photosystem.  相似文献   

12.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

13.
Zn2+ caused a noninhibitory binding of IF1 to mitochondrial membranes in both rabbit heart SMP and intact rabbit heart mitochondria. This Zn2+-induced IF1 binding required the presence of at least trace amounts of MgATP and was essentially independent of pH between 6.2 and 8.2. Addition of Zn2+ after the formation of fully inhibited IF1-ATPase complexes very slowly reversed IF1-mediated ATPase inhibition without causing significant IF1 release from the membranes. When Zn2+ was added during the state 4 energization of ischemic mitochondria in which IF1 was already functionally bound, it slowed somewhat energy-driven ATPase activation. This slowing was probably due to the fairly large depressing effect Zn2+ had upon membrane potential development, but Zn2+ did not decrease the degree of ATPase activation eventually reached at 20 min of state 4 incubation. Zn2+ also preempted normal IF1 release from the membranes, causing what little inhibitor that was released to rebind to the enzyme in noninhibitory IF1-ATPase complexes. The data suggest that IF1 can interact with the ATPase in two ways or through two kinds of sites: (a) a noninhibitory interaction involving a noninhibitory IF1 conformation and/or and IF1 docking site on the enzyme and (b) an inhibitory interaction involving an inhibitory IF1 conformation and/or a distinct ATPase activity regulatory site. Zn2+ appears to have the dual effect of stabilizing the noninhibitory IF1-ATPase interaction and possibily a noninhibitory IF1 conformation while concomitantly preventing the formation of an inhibitory IF1-ATPase interaction and possibly an inhibitory IF1 conformation, regardless of pH. While the data do not rule out direct effects of Zn2+ on either free IF1 or the free enzyme, they suggest that Zn2+ cannot interact readily with either the inhibitor or the enzyme once functional IF1-ATPase complexes are formed.  相似文献   

14.
Megumi Hirono 《BBA》2007,1767(12):1401-1411
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr409, Val411, and Gly414 showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe388, Thr389, and Val396 in cytoplasmic loop i were essential for efficient H+ translocation. Ala436 and Pro560 in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H+-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

15.
Jean Alric  Jérôme Lavergne 《BBA》2010,1797(1):44-51
Assimilation of atmospheric CO2 by photosynthetic organisms such as plants, cyanobacteria and green algae, requires the production of ATP and NADPH in a ratio of 3:2. The oxygenic photosynthetic chain can function following two different modes: the linear electron flow which produces reducing power and ATP, and the cyclic electron flow which only produces ATP. Some regulation between the linear and cyclic flows is required for adjusting the stoichiometric production of high-energy bonds and reducing power. Here we explore, in the green alga Chlamydomonas reinhardtii, the onset of the cyclic electron flow during a continuous illumination under aerobic conditions. In mutants devoid of Rubisco or ATPase, where the reducing power cannot be used for carbon fixation, we observed a stimulation of the cyclic electron flow. The present data show that the cyclic electron flow can operate under aerobic conditions and support a simple competition model where the excess reducing power is recycled to match the demand for ATP.  相似文献   

16.
17.
Maria Krasteva 《BBA》2007,1767(1):114-123
We studied binding of ATP and of the ATP analogs adenosine 5′-(β,γ-methylene)triphosphate (AMPCP) and β,γ-imidoadenosine 5′-triphosphate (AMPPNP) to the Ca2+-ATPase of the sarcoplasmic reticulum membrane (SERCA1a) with time-resolved infrared spectroscopy. In our experiments, ATP reacted with ATPase which had AMPPCP or AMPPNP bound. These experiments monitored exchange of ATP analog by ATP and phosphorylation to the first phosphoenzyme intermediate Ca2E1P. These reactions were triggered by the release of ATP from caged ATP. Only small differences in infrared absorption were observed between the ATP complex and the complexes with AMPPCP and AMPPNP indicating that overall the interactions between nucleotide and ATPase are similar and that all complexes adopt a closed conformation. The spectral differences between ATP and AMPPCP complex were more pronounced at high Ca2+ concentration (10 mM). They are likely due to a different position of the γ-phosphate which affects the β-sheet in the P domain.  相似文献   

18.
When mitochondria become deenergized, futile ATP hydrolysis is prevented by reversible binding of an endogenous inhibitory peptide called IF1 to ATP synthase. Between initial IF1 binding and IF1 locking the enzyme experiences large conformational changes. While structural studies give access to analysis of the dead-end inhibited state, transient states have thus far not been described. Here, we studied both initial and final states by reporting, for the first time, the consequences of mutations of Saccharomyces cerevisiae ATP synthase on its inhibition by IF1. Kinetic studies allowed the identification of amino acids or motifs of the enzyme that are involved in recognition and/or locking of IF1 α-helical midpart. This led to an outline of IF1 binding process. In the recognition step, protruding parts of α and especially β subunits grasp IF1, most likely by a few residues of its α-helical midpart. Locking IF1 within the αβ interface involves additional residues of both subunits. Interactions of the α and β subunits with the foot of the γ subunit might contribute to locking and stabilizing of the dead-end state.  相似文献   

19.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

20.
A phosphorylated polypeptide (ScIRP) from the inner membrane of rat liver mitochondria with an apparent molecular mass of 3.5 kDa was found to be immunoreactive with specific antibodies against subunit c of F0F1-ATPase/ATP synthase (Azarashvily, T. S., Tyynelä, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. L. (2000). Biochem. Biophys. Res. Commun. 270, 741–744. In the present paper we show that the dephosphorylation of ScIRP was promoted by the Ca2+-induced mitochondrial permeability transition (MPT) and prevented by cyclosporin A. Preincubation of ScIRP isolated in its dephosphorylated form with the mitochondrial suspension decreased the membrane potential (M) and the Ca2+-uptake capacity by promoting MPT. Incorporation of ScIRP into black-lipid membranes increased the membrane conductivity by inducing channel formation that was also suppressed by antibodies to subunit c. These data indicate that the phosphorylation level of ScIRP is influenced by the MPT pore state, presumably by stimulation of calcineurin phosphatase by the Ca2+ used to induce MPT. The possibility of ScIRP being part of the MPT pore assembly is discussed in view of its capability to induced channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号