首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5′ end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs.  相似文献   

2.
PUF proteins regulate translation and mRNA stability throughout eukaryotes. Using a cell-free translation assay, we examined the mechanisms of translational repression of PUF proteins in the budding yeast Saccharomyces cerevisiae. We demonstrate that the poly(A)-binding protein Pab1p is required for PUF-mediated translational repression for two distantly related PUF proteins: S. cerevisiae Puf5p and Caenorhabditis elegans FBF-2. Pab1p interacts with oligo(A) tracts in the HO 3′-UTR, a target of Puf5p, to dramatically enhance the efficiency of Puf5p repression. Both the Pab1p ability to activate translation and interact with eukaryotic initiation factor 4G (eIF4G) were required to observe maximal repression by Puf5p. Repression was also more efficient when Pab1p was bound in close proximity to Puf5p. Puf5p may disrupt translation initiation by interfering with the interaction between Pab1p and eIF4G. Finally, we demonstrate two separable mechanisms of translational repression employed by Puf5p: a Pab1p-dependent mechanism and a Pab1p-independent mechanism.  相似文献   

3.
The Puf family of RNA-binding proteins regulates gene expression primarily by interacting with the 3′ untranslated region (3′ UTR) of targeted mRNAs and inhibiting translation and/or stimulating decay. Physical association and computational analyses of yeast Puf3p identified >150 potential mRNA targets involved in mitochondrial function. However, only COX17 has been established as a target of Puf3p-mediated deadenylation and decapping. We have identified 10 new targets that are rapidly degraded in a Puf3p-dependent manner. We also observed changes in Puf3p activity in response to environmental conditions. Puf3p promotes rapid degradation of mRNA targets in the fermentable carbon source dextrose. However, Puf3p-mediated decay activity is inhibited in carbon sources that require mitochondrial function for efficient cell growth. In addition, the activity of Puf3p is rapidly altered by changing the carbon source. PUF3 expression is not decreased at the RNA or protein level by different carbon sources and localization is not significantly altered, suggesting that Puf3p activity is regulated posttranslationally. Finally, under conditions when Puf3p is unable to stimulate decay, Puf3p can still bind its target mRNAs. Together, these experiments provide insight into the carbon source-specific control of Puf3p activity and how such alterations allow Puf3p to dynamically regulate mitochondrial function.  相似文献   

4.
PUF proteins are eukaryotic RNA-binding proteins that repress specific mRNAs. The mechanisms and corepressors involved in PUF repression remain to be fully identified. Here, we investigated the mode of repression by Saccharomyces cerevisiae Puf5p and Puf4p and found that Puf5p specifically requires Eap1p to repress mRNAs, whereas Puf4p does not. Surprisingly, we observed that Eap1p, which is a member of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) class of translational inhibitors, does not inhibit the efficient polyribosome association of a Puf5p target mRNA. Rather, we found that Eap1p accelerates mRNA degradation by promoting decapping, and the ability of Eap1p to interact with eIF4E facilitates this activity. Deletion of EAP1 dramatically reduces decapping, resulting in accumulation of deadenylated, capped mRNA. In support of this phenotype, Eap1p associates both with Puf5p and the Dhh1p decapping factor. Furthermore, recruitment of Eap1p to downregulated mRNA is mediated by Puf5p. On the basis of these results, we propose that Puf5p promotes decapping by recruiting Eap1p and associated decapping factors to mRNAs. The implication of these findings is that a 4E-BP can repress protein expression by promoting specific mRNA degradation steps in addition to or in lieu of inhibiting translation initiation.  相似文献   

5.
mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species.  相似文献   

6.
Olivas W  Parker R 《The EMBO journal》2000,19(23):6602-6611
  相似文献   

7.
8.
9.
PUF proteins bind mRNAs and regulate their translation, stability, and localization. Each PUF protein binds a selective group of mRNAs, enabling their coordinate control. We focus here on the specificity of Puf2p and Puf1p of Saccharomyces cerevisiae, which copurify with overlapping groups of mRNAs. We applied an RNA-adapted version of the DRIM algorithm to identify putative binding sequences for both proteins. We first identified a novel motif in the 3' UTRs of mRNAs previously shown to associate with Puf2p. This motif consisted of two UAAU tetranucleotides separated by a 3-nt linker sequence, which we refer to as the dual UAAU motif. The dual UAAU motif was necessary for binding to Puf2p, as judged by gel shift, yeast three-hybrid, and coimmunoprecipitation from yeast lysates. The UAAU tetranucleotides are required for optimal binding, while the identity and length of the linker sequences are less critical. Puf1p also binds the dual UAAU sequence, consistent with the prior observation that it associates with similar populations of mRNAs. In contrast, three other canonical yeast PUF proteins fail to bind the Puf2p recognition site. The dual UAAU motif is distinct from previously known PUF protein binding sites, which invariably possess a UGU trinucleotide. This study expands the repertoire of cis elements bound by PUF proteins and suggests new modes by which PUF proteins recognize their mRNA targets.  相似文献   

10.
11.
PUF proteins are a conserved family of RNA binding proteins found in all eukaryotes examined so far. This study focussed on PUF5, one of 11 PUF family members encoded in the Trypanosoma brucei genome. Native PUF5 is present at less than 50000 molecules per cell in both bloodstream and procyclic form trypanosomes. C-terminally myc-tagged PUF5 was mainly found in the cytoplasm and could be cross-linked to RNA. PUF5 knockdown by RNA interference had no effect on the growth of bloodstream forms. Procyclic forms lacking PUF5 grew normally, but expression of PUF5 bearing a 21 kDa tandem affinity purification tag inhibited growth. Knockdown of PUF5 did not have any effect on the ability of trypanosomes to differentiate from the mammalian to the insect form of the parasite.  相似文献   

12.
The Pumilio protein is the founding member of the PUF family of RNA-binding proteins, which contains 8 repeat Puf domains and plays important roles during embryogenesis and post-embryogenesis by binding the Nanos response element (NRE) of specific target genes in eukaryotes. In addition, many other proteins containing the Puf domain were identified but with different functions from the Pumilio protein in various species. Taking advantage of the newly assembled genome sequences, in this study we performed a genome-wide analysis of PUF genes in silkworm and other 27 species. In the silkworm, three PUF genes were identified, named Bmpumilio, Bmpenguin and Bmnop by homology analysis. In fungi and animals, four evolutionarily conservational PUF gene families were identified, Group-A, -B, -C and -D. While Group-A, -C, and -D are present in all fungi and animals, Group-B was only identified in fungi. Interestingly, the number and features of the Puf domains are distinct in each group, suggesting different roles for these proteins in every group. The EST and microarray data showed that the mRNA of the three PUF genes can be widely detected in all tissues of the silkworm. Our results provide some new insights into the functions and evolutionary characteristics of PUF proteins.  相似文献   

13.
PUF60 is an essential splicing factor functionally related and homologous to U2AF(65). Its C-terminal domain belongs to the family of U2AF (U2 auxiliary factor) homology motifs (UHM), a subgroup of RNA recognition motifs that bind to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Here, we show that the Puf60 UHM is mainly monomeric in physiological buffer, whereas its dimerization is induced upon the addition of SDS. The crystal structure of PUF60-UHM at 2.2 angstroms resolution, NMR data, and mutational analysis reveal that the dimer interface is mediated by electrostatic interactions involving a flexible loop. Using glutathione S-transferase pulldown experiments, isothermal titration calorimetry, and NMR titrations, we find that Puf60-UHM binds to ULM sequences in the splicing factors SF1, U2AF65, and SF3b155. Compared with U2AF65-UHM, Puf60-UHM has distinct binding preferences to ULMs in the N terminus of SF3b155. Our data suggest that the functional cooperativity between U2AF65 and Puf60 may involve simultaneous interactions of the two proteins with SF3b155.  相似文献   

14.
Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress.  相似文献   

15.
We generated FM7a and CyO balancer chromosomes bearing a Tubby1 (Tb1) dominant transgene. Flies heterozygous for these FM7a and CyO derivatives exhibit a phenotype undistinguishable from that elicited by the Tb1 mutation associated with the TM6B balancer. We tested two of these Tb-bearing balancers (FM7-TbA and CyO-TbA) for more than 30 generations and found that the Tb1 transgene they carry is stable. Thus, these new Tb-tagged balancers are particularly useful for balancing lethal mutations and distinguish homozygous mutant larvae from their heterozygous siblings.  相似文献   

16.
17.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

18.
Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2(-) sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.  相似文献   

19.
20.
Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth on a nonfermentable carbon source, conditions that stimulate mitochondrial biogenesis. These findings support a role for Puf3p in mitochondrial biogenesis through effects on mRNA interactions. In addition, Puf3p links the mitochore, a complex required for mitochondrial-cytoskeletal interactions, to the Arp2/3 complex, the force generator for actin-dependent, bud-directed mitochondrial movement. Puf3p, the mitochore, and the Arp2/3 complex coimmunoprecipitate and have two-hybrid interactions. Moreover, deletion of PUF3 results in reduced interaction between the mitochore and the Arp2/3 complex and defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Puf3p is a mitochondrial protein that contributes to the biogenesis and motility of the organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号