首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca2 + channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na+/HCO3 co-transporter NBCe1-B, the Na+/H+ exchanger NHE3, the Cl channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl/HCO3 exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

2.
InsP(3) is an important link in the intracellular information network. Previous observations show that activation of InsP(3)-receptor channels on the granular membrane can turn secretory granules into Ca(2+) oscillators that deliver periodic trains of Ca(2+) release to the cytosol (T. Nguyen, W. C. Chin, and P. Verdugo, 1998, Nature, 395:908-912; I. Quesada, W. C. Chin, J. Steed, P. Campos-Bedolla, and P. Verdugo, 2001, BIOPHYS: J. 80:2133-2139). Here we show that InsP(3) can also turn mast cell granules into proton oscillators. InsP(3)-induced intralumenal [H(+)] oscillations are ATP-independent, result from H(+)/K(+) exchange in the heparin matrix, and produce perigranular pH oscillations with the same frequency. These perigranular pH oscillations are in-phase with intralumenal [H(+)] but out-of-phase with the corresponding perigranular [Ca(2+)] oscillations. The low pH of the secretory compartment has critical implications in a broad range of intracellular processes. However, the association of proton release with InsP(3)-induced Ca(2+) signals, their similar periodic nature, and the sensitivity of important exocytic proteins to the joint action of Ca(2+) and pH strongly suggests that granules might encode a combined Ca(2+)/H(+) intracellular signal. A H(+)/Ca(2+) signal could significantly increase the specificity of the information sent by the granule by transmitting two frequency encoded messages targeted exclusively to proteins like calmodulin, annexins, or syncollin that are crucial for exocytosis and require specific combinations of [Ca(2+)] "and" pH for their action.  相似文献   

3.
4.
Cytoplasmic Ca2+ is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca2+ in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca2+. Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca2+ as a second messenger. Changes in intracellular Ca2+ concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca2+-activated K+ channels and Cl channels. We also review evidence of interactions of Ca2+ signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca2+ signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.  相似文献   

5.
Over the past decades there has been considerable progress in understanding the multifunctional roles of mitochondrial ion channels in metabolism, energy transduction, ion transport, signaling, and cell death. Recent data have suggested that some of these channels function under physiological condition, and others may be activated in response to pathological insults and play a key role in cytoprotection. This review outlines our current understanding of the molecular identity and pathophysiological roles of the mitochondrial ion channels in the heart with particular emphasis on cardioprotection against ischemia/reperfusion injury, and future research on mitochondrial ion channels.  相似文献   

6.
Transport mechanisms involved in pH homeostasis are relevant for the survival of Leishmania parasites. The presence of chloride conductive pathways in Leishmania has been anticipated since anion channel inhibitors limit the proton extrusion mediated by the H+ATPase, which is the major regulator of intracellular pH in amastigotes. In this study, we used Xenopus laevis oocytes as a heterologous expression system in which to study the expression of ion channels upon microinjection of polyA mRNA from Leishmania amazonensis. After injection of polyA mRNA into the oocytes, we measured three different types of currents. We discuss the possible origin of each, and propose that Type 3 currents could be the result of the heterologous expression of proteins from Leishmania since they show different pharmacological and biophysical properties as compared to endogenous oocyte currents.  相似文献   

7.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

8.
Channels and transporters play essential biological roles primarily through the transportation of ions and small molecules that are required to maintain cellular activities across the biomembrane. Secondary to transportation, channels and transporters also integrate and coordinate biological functions at different levels, ranging from the subcellular (nm) to multicellular (μm) scales. This is underpinned by efficient functional coupling within molecular assemblies of channels, transporters, proteins, small molecules, and lipids.  相似文献   

9.
Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features.  相似文献   

10.
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1?/? and TRPV1?/? mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.  相似文献   

11.
Mechanistic models for biochemical systems are frequently proposed from structural data. Site-directed mutagenesis can be used to test the importance of proposed functional sites, but these data do not necessarily indicate how these sites contribute to function. In this study, we applied an alternative approach to the catalytic mechanism of alkaline phosphatase (AP), a widely studied prototypical bimetallo enzyme. A third metal ion site in AP has been suggested to provide general base catalysis, but comparison of AP with an evolutionarily related enzyme casts doubt on this model. Removal of this metal site from AP has large differential effects on reactions of cognate and promiscuous substrates, and the results are inconsistent with general base catalysis. Instead, these and additional results suggest that the third metal ion stabilizes the transferred phosphoryl group in the transition state. These results establish a new mechanistic model for this prototypical bimetallo enzyme and demonstrate the power of a comparative approach for probing biochemical function.  相似文献   

12.
Acid-sensing ion channels ASIC1a and ASIC1b are ligand-gated ion channels that are activated by H+ in the physiological range of pH. The apparent affinity for H+ of ASIC1a and 1b is modulated by extracellular Ca2+ through a competition between Ca2+ and H+. Here we show that, in addition to modulating the apparent H+ affinity, Ca2+ blocks ASIC1a in the open state (IC50 approximately 3.9 mM at pH 5.5), whereas ASIC1b is blocked with reduced affinity (IC50 > 10 mM at pH 4.7). Moreover, we report the identification of the site that mediates this open channel block by Ca2+. ASICs have two transmembrane domains. The second transmembrane domain M2 has been shown to form the ion pore of the related epithelial Na+ channel. Conserved topology and high homology in M2 suggests that M2 forms the ion pore also of ASICs. Combined substitution of an aspartate and a glutamate residue at the beginning of M2 completely abolished block by Ca2+ of ASIC1a, showing that these two amino acids (E425 and D432) are crucial for Ca2+ block. It has previously been suggested that relief of Ca2+ block opens ASIC3 channels. However, substitutions of E425 or D432 individually or in combination did not open channels constitutively and did not abolish gating by H+ and modulation of H+ affinity by Ca2+. These results show that channel block by Ca2+ and H+ gating are not intrinsically linked.  相似文献   

13.
Vacuoles play various roles in many physiologically relevant processes in plants. Some of the more prominent are turgor provision, the storage of minerals and nutrients, and cellular signalling. To fulfil these functions a complement of membrane transporters is present at the tonoplast. Prolific patch clamp studies have shown that amongst these, both selective and non-selective ion channels participate in turgor regulation, nutrient storage and signalling. This article reviews the physiological roles, expression patterns and structure function properties of plant vacuolar anion and cation channels that are gated by voltage and ligands.  相似文献   

14.
Cytoprotective Channels in Mitochondria   总被引:2,自引:0,他引:2  
Several ion channels are expressed in the inner and outer membranes of mitochondria, but the exact function of these channels is not completely understood. The opening of certain channels is thought to induce the process of cell death or apoptosis. However, other channels of the inner mitochondrial membrane help protect against ischemic injury and oxidative stress. Mitochondrial ATP-sensitive K+ channels (mitoKATP) and mitochondrial Ca2+-activated K+ channels (mitoKCa) are the primary protective channels that have been identified. In addition to their thermogenic role, certain isoforms of uncoupling proteins are also shown to have protective roles in certain experimental models. This review attempts to provide an updated overview of the proposed mechanism for the protective function of these membrane proteins. Controversies and unanswered questions regarding these channels will also be discussed.  相似文献   

15.
Chloride intracellular channel proteins (CLICs) are distinct from most ion channels in that they have both soluble and integral membrane forms. CLICs are highly conserved in chordates, with six vertebrate paralogues. CLIC-like proteins are found in other metazoans. CLICs form channels in artificial bilayers in a process favoured by oxidising conditions and low pH. They are structurally plastic, with CLIC1 adopting two distinct soluble conformations. Phylogenetic and structural data indicate that CLICs are likely to have enzymatic function. The physiological role of CLICs appears to be maintenance of intracellular membranes, which is associated with tubulogenesis but may involve other substructures.  相似文献   

16.
Judy Hirst 《BBA》2006,1757(4):225-239
Protein film voltammetry, the direct electrochemistry of redox enzymes and proteins, provides precise and comprehensive information on complicated reaction mechanisms. By controlling the driving force for a reaction (using the applied potential) and monitoring the reaction in real time (using the current), it allows thermodynamic and kinetic information to be determined simultaneously. Two challenges are inherent to protein film voltammetry: (i) to adsorb the protein or enzyme in a native and active configuration on the electrode surface, and (ii) to understand and interpret voltammetric results on both a qualitative and quantitative level, allowing mechanistic models to be proposed and rigorous experiments to test these models to be devised. This review focuses on the second of these two challenges. It describes how to use protein film voltammetry to derive mechanistic and biochemically relevant information about redox proteins and enzymes, and how to evaluate and interpret voltammetric results. Selected key studies are described in detail, to illustrate their underlying principles, strategies and physical interpretations.  相似文献   

17.
Quesada I  Chin WC  Verdugo P 《FEBS letters》2006,580(9):2201-2206
Phaeocystis globosa, a leading agent in marine carbon cycling, releases its photosynthesized biopolymers via regulated exocytosis. Release is elicited by blue light and relayed by a characteristic cytosolic Ca(2+) signal. However, the source of Ca(2+) in these cells has not been established. The present studies indicate that Phaeocystis' secretory granules work as an intracellular Ca(2+) oscillator. Optical tomography reveals that photo-stimulation induces InsP(3)-triggered periodic lumenal [Ca(2+)] oscillations in the granule and corresponding out-of-phase cytosolic oscillations of [Ca(2+)] that trigger exocytosis. This Ca(2+) dynamics results from an interplay between the intragranular polyanionic matrix, and two Ca(2+)-sensitive ion channels located on the granule membrane: an InsP(3)-receptor-Ca(2+) channel, and an apamin-sensitive K(+) channel.  相似文献   

18.
Phosphatidylinositol (4,5) bisphosphate, [PtdIns(4,5)P2], is a signaling lipid involved in many important processes in animal cells such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels, and nuclear signaling pathways. In the last years PtdIns(4,5)P2 and its synthesizing enzyme, phosphatidylinositol phosphate kinase (PIPK), has been intensively studied in plant cells, revealing a key role in the control of polar tip growth. Analysis of the PIPK members from Arabidopsis thaliana, Oryza sativa and Physcomitrella patens showed that they share some regulatory features with animal PIPKs but also exert plant-specific modes of regulation. This review aims at giving an overview on the PIPK family from Arabidopsis thaliana and Physcomitrella patens. Even though their basic structure, modes of activation and physiological role is evolutionary conserved, modules responsible for plasma membrane localization are distinct for different PIPKs, depending on differences in physiological and/or developmental status of cells, such as polarized and non-polarized.  相似文献   

19.
Ion Channels and Cancer   总被引:17,自引:0,他引:17  
Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.  相似文献   

20.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号