首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA. It involves a one-step fluorescent in situ hybridization approach followed by fluorescence microscopy imaging. Our method reliably identified ALT in cancer cell lines from different tumor entities and was validated in three established models of ALT induction and suppression. Furthermore, we successfully applied ALT-FISH to spatially resolve ALT activity in primary tissue sections from leiomyosarcoma and neuroblastoma tumors. Thus, our assay provides insights into the heterogeneity of ALT tumors and is suited for high-throughput applications, which will facilitate screening for ALT-specific drugs.  相似文献   

2.
111 chemicals of known rodent carcinogenicity (49 carcinogens, 62 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, hepatocarcinogens, and halogenated hydrocarbons, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 111 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. Composite parameters are defined as follows: CP = [ODC and P450), CT = [ALT and ODC), and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 55%, specificity 87%, positive predictivity 77%, negative predictivity 71%, and concordance 73%. For these chemicals, the 73% concordance of this study was superior to the concordance obtained from published data from other laboratories on the Ames test (53%), structural alerts (SA) (46%), chromosome aberrations in Chinese hamster ovary cells (ABS) (48%), cell mutation in mouse lymphoma 15178Y cells (MOLY) (52%), and sister-chromatid exchange in Chinese hamster ovary cells (SCE) (60%). The 4 in vivo biochemical assays were complementary to each other. The composite parameter TS also shows complementarity to all 5 other predictors of rodent cancer examined in this paper. For example, the Ames test alone has a concordance of only 53%. In combination with TS, the concordance is increased to 62% (Ames or TS) or to 63% (Ames and TS). For the 67 chemicals with data available for SA, the concordance for predicting rodent carcinogenicity was 47% (for SA alone), 54% (for SA or TS), and 66% (for SA and TS). These biochemical assays will be useful: (1) to predict rodent carcinogenicity per se, (2) to 'confirm' the results of short-term mutagenicity tests by the high specificity mode of the biochemical assays (the specificity and positive predictivity are both 100%), and (3) to be a component of future complementary batteries of tests for predicting rodent carcinogenicity.  相似文献   

3.
Alanine aminotransferase (ALT) is a key enzyme for gluconeogenesis as well as a widely used serum marker for liver injury. We have identified two ALT isoenzymes, ALT1 and ALT2, which are encoded by separate genes. In this study, we described the expression, purification and initial characterization of human ALT1 and ALT2 proteins in High-five insect cells. Human ALT1 and ALT2 were expressed as His-tagged fusion proteins by recombinant baculovirus in insect cells and purified into homogeneity in one step by using immobilized Ni2+-affinity chromatography. Tag-free ALT1 and ALT2 were obtained by cleavage of enterokinase digestion and used for initial characterization of the enzymes. The specific ALT activity of purified fusion or His-tag-removed ALT1 was about 15-fold higher than that of ALT2 and their enzymatic activities decreased quickly at 37 °C and −20 °C, but were well preserved at −80 °C. Nevertheless, the ALT1 and ALT2 activities remained stable in a buffer containing 25% glycerol. The pH profile was similar between hALT1 and hALT2 in that both enzymes remained fully active between pH 6.5 and 8.0. The purified ALT recombinant proteins can not only be used as a reference protein standard for the ALT assay in clinical chemistry, but also will be useful for understanding the biochemical and biological significance of the isoenzymes and for developing ALT isoform-specific assays for clinical or preclinical diagnostic use.  相似文献   

4.
28 chemicals known to be mutagenic in the Ames test but not carconigenic in rodent bioassays were selected for study. The chemicals were administered by gavage in 2 dose levels to female Sprague-Dawley rats. The effects of these 28 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. The scientific approach taken was to either experimentally find individual cancer predictors of high specificity or to mathematically create composite predictors of high specificity.

Composite predictive parameters are defined as follows: CP = [ODC and P450], CT = [ALT and ODC] and TS = [DD or CP or CT]. The specificity (percent of rodent noncarcinogens which test negative) of DD, ODC, ALT, P450, CP, CT and TS was 100%, 46%, 89%, 86%, 93%, 93% and 86%, respectively. For these 28 mutagenic noncarcinogens, the specificity of structural alerts (SA) 13%, mutation in mouse lymphoma cells (MOLY) 0%, chromosomal aberrations in Chinese hamster ovary cells (ABS) 13%, and sister-chromatid exchange in Chinese hamster ovary cells (SCE) 0% were much lower. The ke test, an experimental measure of electron attachment, had a specificity of 33%. DD was the only DNA related parameter to predict well the noncarcinogenic rodent bioassay result of Ames false-positive chemicals. 5 nongenotoxic parameters (ALT, P450, CP, CT and [CP or CT]) predicted the rodent bioassay result well. Depending on the prevalence of chemicals carcinogenic to humans, the problem of Ames test false positives for predicting human cancer may be either small or large.  相似文献   


5.
Alanine aminotransferase (ALT) is a pyridoxal enzyme found mainly in the liver and kidney, but also in small amounts in the heart, muscle, fat, and brain. Serum aminotransferase activities have been used broadly as surrogate markers for tissue injury and disease in human and veterinary clinical settings and in safety assessment of chemicals and pharmaceuticals. Because of its relative abundance in liver, increased serum ALT activity is generally considered indicative of liver damage. Two ALT isoenzymes, ALT1 and ALT2, are known and have been cloned and sequenced from human, rat, and mouse. In this study, we have cloned the complementary DNA encoding the canine orthologue of ALT1 (cALT1). The complete cDNA sequence comprised 1852 bases and contained a 1485-base open reading frame, which encodes a polypeptide of 494 amino acid residues. Canine ALT1 shares 87.7, 87.2, and 87.0% amino acid identity to its human, mouse, and rat orthologues, respectively. The cDNA was expressed in Escherichia coli, with a N-terminal His (6x) tag, and the recombinant enzyme was purified using immobilized metal-affinity chromatography. The final yield of the purified recombinant cALT1 was greater than 5mg/L culture. The alanine transaminase activity of purified cALT1 was 229.81U/mg protein, which is approximately 38-fold higher than that of total soluble recombinant E. coli cell lysate, confirming that the enzyme is a functional ALT. Evaluation of various canine tissues by RT-PCR revealed that the level of ALT1 expression is in the order of: heart>liver>fat approximately brain approximately gastrocnemius>kidney. The purified cALT1 will be helpful to develop isoenzyme-specific anti-bodies, which could further improve the diagnostic resolution of current ALT assays in drug safety studies.  相似文献   

6.
M Kalina  D Levi  S Riklis 《Histochemistry》1990,95(1):97-103
Alveolar type II like cells (ALT II) represent a small subpopulation of alveolar type II cells, which is able to proliferate, can be passaged and possess many characteristics of differentiated adult type II cells. A correlation was found between the growth and development of ALT II cells in culture and their alkaline phosphatase activity. Unlike alveolar type II cells, which lose the activity in culture, ALT II cells regain the activity and maintain it for a long culture period. Quantitative histochemical analysis of the stained cells indicate that 80% of the cells at days 15-20 in culture are alkaline phosphatase positive. Inhibition studies indicate that alkaline phosphatase from ALT II cells and freshly isolated type II cells were similar. The inhibition of ALT II alkaline phosphatase by L-levamisole and its heat stability are similar to that of the bone enzyme and differ from the intestinal enzyme. Alkaline phosphatase expression is considered part of the differentiated phenotype of these cells. Therefore, the presence of this enzyme in ALT II cells adds support to the notion that these cells maintain many aspects of mature alveolar type II cells.  相似文献   

7.
Summary Alveolar type II like cells (ALT II) represent a small subpopulation of alveolar type II cells, which is able to proliferate, can be passaged and possess many characteristics of differentiated adult type II cells. A correlation was found between the growth and development of ALT II cells in culture and their alkaline phosphatase activity. Unlike alveolar type II cells, which lose the activity in culture, ALT II cells regain the activity and maintain it for a long culture period. Quantitative histochemical analysis of the stained cells indicate that 80% of the cells at days 15–20 in culture are alkaline phosphatase positive. Inhibition studies indicate that alkaline phosphatase from ALT II cells and freshly isolated type II cells were similar. The inhibition of ALT II alkaline phosphatase byl-levamisole and its heat stability are similar to that of the bone enzyme and differ from the intestinal enzyme. Alkaline phosphatase expression is considered part of the differentiated phenotype of these cells. Therefore, the presence of this enzyme in ALT II cells adds support to the notion that these cells maintain many aspects of mature alveolar type II cells.  相似文献   

8.
The acquisition of cellular immortality is a critical step in human tumorigenesis. While the vast majority of human tumors activate the catalytic component of telomerase (hTERT) to stabilize their telomeres and attain immortality, a significant portion (7-10%) utilize a poorly defined alternative form of telomere maintenance referred to as ALT. Interestingly, telomerase activation is often favored in tumors arising from the epithelial compartment whereas ALT occurs in a more significant portion of tumors that arise from tissues of mesenchymal origin. This observation raises the possibility that cell type specific mechanisms favor the activation of telomerase versus ALT in human tumorigenesis. Because cellular immortality is critical to tumorigenesis it may represent an important anti-neoplastic target. Indeed, several approaches have successfully eliminated telomerase activity in human tumor models and some of these approaches are now moving into clinical trials. While these results are encouraging, it is clear that these approaches will have no impact on cells that utilize the ALT mechanism for telomere maintenance. Furthermore, the existence of ALT raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies may escape by activating the ALT pathway. For these reasons a detailed understanding of the ALT pathway is critical to the future design of anti-neoplastic therapies.  相似文献   

9.
Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT.  相似文献   

10.
11.
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme 1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.  相似文献   

12.
Thioredoxin reductase 1 (TrxR1) has emerged as a potential target for cancer therapy, because it is overexpressed in several types of cancers and associated with increased tumour growth and poor patient prognosis. Alantolactone (ALT), a natural sesquiterpene lactone originated from traditional folk medicine Inula helenium L., has been reported to exert antitumor activity in various tumours. However, the effect of ALT on human gastric cancer cells and its underlying mechanism remains unknown. In this study, we showed that ALT inhibited cell proliferation and induced cell apoptosis in gastric cancer cells. Mechanistically, our data found that ALT induced reactive oxygen species (ROS) production by inhibiting TrxR1 activity, resulting in the activation of p38 mitogen-activated protein kinase (MAPK) pathway and eventually cell apoptosis in gastric cancer cells. And the effects of ALT were reversed by pre-treatment with NAC (a scavenger of ROS). Further investigation revealed that ALT displayed synergistic lethality with erastin against gastric cancer cells, which demonstrating combined inhibition of TrxR1 and glutathione (GSH) leads to a synergistic effect in gastric cancer cells. More importantly, ALT treatment markedly reduced the activity of TrxR1 in vivo and inhibited the growth of gastric cancer xenografts without exhibiting significant toxicity. Taken together, these findings suggest that ALT may be used as a novel therapeutic agent against human gastric cancer.  相似文献   

13.
We investigated the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum of human blood during in vitro aging in normal and zero magnetic field (ZMF) for up to 72 hr at room temperature. We found a 24–31% apparent decrease of the enzymes' activities in ZMF conditions compared to controls aging in the normal geomagnetic field. The presence of these enzymes in the serum is mainly due to hemolysis. However, hemolysis is stronger in ZMF conditions. Therefore, the amount of enzymes released into the serum is correspondingly higher in these conditions. This leads to the conclusion that AST and ALT activities diminished by ZMF to a much greater extent than the apparent effect. For example, a 72-hr aging leads to a minimum five times reduction in the enzymatic activity in the blood serum. The loss of activity could be explained by denaturation and degradation processes, which proceeded more rapidly in ZMF conditions.  相似文献   

14.
Non-enzymatic glycation is a common post-translational modification of tissue and plasma proteins which can impair their functions in living organisms. In this study, the authors have demonstrated for the first time an inhibitory effect of in vitro glycation on the catalytic activity of alanine aminotransferase (ALT, EC 2.6.1.2), a pyridoxal phosphate enzyme with several lysine residues in the molecule. The porcine heart enzyme was incubated with 50 mmol/l D-fructose, D-glucose, D,L-glyceraldehyde, or D-ribose in 0.1 mol/l phosphate buffer (pH 7.4) at 25°C for up to 20 days. The strongest glycation effect was shown by D,L-glyceraldehyde, which caused complete enzyme inhibition within 6 days. After 20 days of incubation, the ALT activity in samples with D-fructose and D-ribose was less than 7% of the initial enzyme activity. A statistically significant effect of D-glucose on the enzymatic activity of ALT was not found. Incubation of ALT with D-fructose, D,L-glyceraldehyde and D-ribose minimized its catalytic activity both in the glycated and non-glycated fractions of the samples. Markedly higher activity was found in the glycated fraction with glucose. The inhibitory effect of glycation of ALT with D-fructose and D-ribose was found to be more intensive in the presence of L-alanine and weaker in the presence of 2-oxoglutarate. The findings suggest that glycation of the e-amino group of Lys313 as a crucial part of the catalytic site of ALT may contribute to ALT inactivation in the presence of glycating sugars. Nevertheless, glycation of lysine residues outside the active center of ALT seems to be primary.  相似文献   

15.
It has been shown previously that some immortalized human cells maintain their telomeres in the absence of significant levels of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). Cells utilizing ALT have telomeres of very heterogeneous length, ranging from very short to very long. Here we report the effect of telomerase expression in the ALT cell line GM847. Expression of exogenous hTERT in GM847 (GM847/hTERT) cells resulted in lengthening of the shortest telomeres; this is the first evidence that expression of hTERT in ALT cells can induce telomerase that is active at the telomere. However, rapid fluctuation in telomere length still occurred in the GM847/hTERT cells after more than 100 population doublings. Very long telomeres and ALT-associated promyelocytic leukemia (PML) bodies continued to be generated, indicating that telomerase activity induced by exogenous hTERT did not abolish the ALT mechanism. In contrast, when the GM847 cell line was fused with two different telomerase-positive tumor cell lines, the ALT phenotype was repressed in each case. These hybrid cells were telomerase positive, and the telomeres decreased in length, very rapidly at first and then at the rate seen in telomerase-negative normal cells. Additionally, ALT-associated PML bodies disappeared. After the telomeres had shortened sufficiently, they were maintained at a stable length by telomerase. Together these data indicate that the telomerase-positive cells contain a factor that represses the ALT mechanism but that this factor is unlikely to be telomerase. Further, the transfection data indicate that ALT and telomerase can coexist in the same cells.  相似文献   

16.
Heparin is used as an anticoagulant drug. The anticoagulation process is mainly caused by the interaction of heparin with antithrombin followed by inhibition of anticoagulant factor IIa and factor Xa. The anti-factor IIa and anti-factor Xa activities of heparin are critical for its anticoagulant effect; however, physicochemical methods that can reflect these activities have not been established. Thus, the measurements of anti-IIa and anti-Xa activities by biological assay are critical for the quality control of heparin products. Currently in the Japanese Pharmacopoeia (JP), the activities of heparin sodium and heparin calcium are measured by an anti-Xa activity assay (anti-Xa assay), but anti-IIa activity is not measured. Here, we established an anti-IIa activity assay (anti-IIa assay) and an anti-Xa assay having good accuracy and precision. When samples having a relative activity of 0.8, 1.0 and 1.2 were measured by the established anti-IIa and anti-Xa assays in nine laboratories, good accuracy (100.0–102.8% and 101.6–102.8%, respectively), good intermediate precision (1.9–2.1% and 2.4–4.2%, respectively) and good reproducibility (4.0–4.8% and 3.6–6.4%, respectively) were obtained. The established anti-IIa and anti-Xa assays have similar protocols, and could be performed by a single person without a special machine. The established assays would be useful for quality control of heparin.  相似文献   

17.

Background

The incidence of metabolic syndrome (MetS) is rapidly increasing worldwide and associated with alanine aminotransferase (ALT) activity. However, the impact of ALT activity on MetS incidence is inconsistent in published literature. We therefore estimated the association between elevated ALT activity and incident MetS through a meta-analysis of prospective cohort studies.

Methods/Principal Findings

All published prospective cohort studies on the association between elevated ALT activity and incident MetS were retrieved from Pubmed, Embase, and the Institute for Scientific Information (ISI). In all, seven prospective cohort studies, with 31545 participants and 2873 cases of incident MetS were recruited. If there was insignificant heterogeneity (P-value>0.05 and I2<50%), the fixed-effect model was used to calculate the pooled relative risks (RRs) of incident MetS induced by raised ALT. Otherwise, the random-effect model was used. The calculated RR was 1.81 (95% confidence interval [CI]: 1.49–2.14) when the incidence of MetS was compared between the highest versus the lowest classification of ALT activities. The pooled RR was 1.13 (95% CI: 1.11–1.16) in dose-response analysis with 5 units per liter (U/l) of ALT increment. Subgroup analysis suggested that gender disparity might be the main origin of heterogeneity in overall analysis (P = 0.007 between RRs of gender-specific subgroups evaluated with 5 U/l increments of ALT). Women had a higher dose-response risk of MetS incidence (1.38, 95% CI: 1.20–1.55) than men. Furthermore, sensitivity analysis confirmed the stability of results. No publication bias was found in our meta-analysis.

Conclusions/Significance

Current evidence from prospective studies supports the association between ALT elevation and increasing MetS incidence. This association is closer and more consistent in female population. Further studies are needed to confirm this association and to investigate the potential mechanism of ALT activity on MetS occurrence.  相似文献   

18.
19.
Telomere stabilization is critical for tumorigenesis. A number of tumors and cell lines use a recombination-based mechanism, alternative lengthening of telomeres (ALT), to maintain telomere repeat arrays. Current data suggest that the mutation of p53 facilitates the activation of this pathway. In addition to its functions in response to DNA damage, p53 also acts to suppress recombination, independent of transactivation activity, raising the possibility that p53 might regulate the ALT mechanism via its role as a regulator of recombination. To test the role of p53 in ALT we utilized inducible alleles of human p53. We show that expression of transactivation-incompetent p53 inhibits DNA synthesis in ALT cell lines but does not affect telomerase-positive cell lines. The expression of temperature-sensitive p53 in clonal cell lines results in ALT-specific, transactivation-independent growth inhibition, due in part to the perturbation of S phase. Utilizing chromatin immunoprecipitation assays, we demonstrate that p53 is associated with the telomeric complex in ALT cells. Furthermore, the inhibition of DNA synthesis in ALT cells by p53 requires intact specific DNA binding and suppression of recombination functions. We propose that p53 causes transactivation-independent growth inhibition of ALT cells by perturbing telomeric recombination.  相似文献   

20.
Firefly luciferase and Escherichia coli beta-galactosidase chemiluminescent reporter gene assays are rapid and sensitive means of detecting reporter enzyme activities in cell lysates of both eukaryotic and prokaryotic systems. In these assays, expression vectors containing the luciferase or beta-galactosidase genes are transferred to cells in culture or animal tissues in vivo. Crude cell or organ lysates are then prepared and submitted to enzyme assays. The level of enzyme activity is proportional to the efficiency of gene delivery and expression. When used with modified substrates that emit light when cleaved by the appropriate enzyme, luciferase and beta-galactosidase activity can be detected luminometrically. Attempts to apply these assays to cell lysates contaminated with blood, as from any whole organ lysate, have had questionable results thus far because of light absorption by hemoglobin in the ranges of light emission by both of these assays. We have made several adjustments to standard chemiluminescent reporter gene assay protocols to minimize errors in quantitation contributed by hemoglobin. To this end, we have developed a method for quantitating the protein due to blood and due to the organ itself in a blood-contaminated organ lysate. We have also found that the use of a colorimetric protein assay that is unaffected by hemoglobin absorbance is preferred for protein quantitation. In conclusion, luciferase and beta-galactosidase assays can be applied to blood-contaminated organ lysates; however, the luciferase assay proved to be superior due to minimal endogenous activity and lower absorption by hemoglobin of light emitted by the enzyme product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号