首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5′-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12–18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18–24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.  相似文献   

3.
4.
Li N  Xu X  Xiao B  Zhu ED  Li BS  Liu Z  Tang B  Zou QM  Liang HP  Mao XH 《Molecular biology reports》2012,39(4):4655-4661
MicroRNAs have been implicated as a central regulator of the immune system. We have previously reported that Helicobacter pylori (H. pylori) was able to increase the expression of miR-146a, and miR-146a may negatively regulate H. pylori-induced inflammation, but the exact mechanism of how H. pylori contribute the induction of miR-146a is not clear. Here, we attempted to assess the role of H. pylori related proinflammatory cytokines including interleukin (IL)-8, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and cytotoxin-associated gene A (CagA) virulence factor on the induction of miR-146a. We found that IL-8, TNF-α, and IL-1β could contribute to the induction of miR-146a in gastric epithelial cell HGC-27 in NF-κB-dependent manner, while the induction of miR-146a upon H. pylori stimulation was independent of above proinflammatory cytokines. Furthermore, overexpression of miR-146a reduced H. pylori—induced IL-8, TNF-α, and IL-1β. However, CagA had no effect on the miR-146a induction. Taken together, our study suggest that proinflammatory cytokines IL-8, TNF-α, and IL-1β could contribute to the induction of miR-146a during H. pylori infection, while CagA is not necessarily required for miR-146a induction. miR-146a may function as novel negative regulators to modulate the inflammation.  相似文献   

5.
Inflammatory responses play a critical role in ischemic brain injury. MicroRNA-155 (miR-155) induces the expression of inflammatory cytokines, and acetylbritannilactone (ABL) exerts potent antiinflammatory actions by inhibiting expression of inflammation-related genes. However, the functions of miR-155 and the actual relationship between ABL and miR-155 in ischemia-induced cerebral inflammation remain unclear. In this study, cerebral ischemia of wild-type (WT) and miR-155−/− mice was induced by permanent middle cerebral artery occlusion (MCAO). pAd-miR-155 was injected into the lateral cerebral ventricle 24 h before MCAO to induce miR-155 overexpression. MCAO mice and oxygen-glucose deprivation (OGD)-treated BV2 cells were used to examine the effects of ABL and miR-155 overexpression or deletion on the expression of proinflammatory cytokines. We demonstrated that ABL treatment significantly reduced neurological deficits and cerebral infarct volume by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression in ischemic cerebral tissue and OGD-treated BV2 cells. Mechanistic studies suggested that the observed decrease in TNF-α and IL-1β expression was attributable to the ABL-induced suppression of the expression of nuclear factor-kappa B (NF-κB) and Toll-like receptor 4 (TLR4). We further found that miR-155 promoted TNF-α and IL-1β expression by upregulating TLR4 and downregulating the expression of suppressor of cytokine signaling 1 (SOCS1) and myeloid differentiation primary response gene 88 (MyD88), while ABL exerted an inhibitory effect on miR-155-mediated gene expression. In conclusion, miR-155 mediates inflammatory responses in ischemic cerebral tissue by modulating TLR4/MyD88 and SOCS1 expression, and ABL exerts its antiinflammatory action by suppressing miR-155 expression, suggesting a novel miR-155-based therapy for ischemic stroke.  相似文献   

6.
microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma.  相似文献   

7.
CagA protein is the most assessed effecter molecule of Helicobacter pylori. In this report, we demonstrate how CagA protein regulates the functions of dendritic cells (DC) against H. pylori infection. In addition, we found that CagA protein was tyrosine-phosphorylated in DC. The responses to cagA-positive H. pylori in DC were reduced in comparison to those induced by cagA-negative H. pylori. CagA-overexpressing DC also exhibited a decline in the responses against LPS stimulation and the differentiation of CD4+ T cells toward Th1 type cells compared to wild type DC. In addition, the level of phosphorylated IRF3 decreased in CagA-overexpressing DC stimulated with LPS, indicating that activated SHP-2 suppressed the enzymatic activity of TBK1 and consequently IRF3 phosphorylation. These data suggest that CagA protein negatively regulates the functions of DC via CagA phosphorylation and that cagA-positive H. pylori strains suppress host immune responses resulting in their chronic colonization of the stomach.  相似文献   

8.
Previous reports have indicated that Helicobacter pylori (H. pylori) causes epigenetic changes of certain genes such as cancer suppression genes, which may be associated with carcinogenesis. However, the mechanism by which it causes epigenetic changes in certain genes and not in others is unclear. Presently, we focused on a cancer suppression gene, runx3, and demonstrated the following: (1) H. pylori induces nitric oxide (NO) production in macrophages. (2) NO causes methylation of runx3 in epithelial cells. (3) H. pylori induces the methylation of epithelial cells in the presence of macrophages, which is reversed by an NO-specific inhibitor. These results indicate that H. pylori-induced methylation is mediated by NO, and suggest that NO may be a key to the mechanism of how H. pylori causes epigenetic changes in certain genes. Additionally, we demonstrated that lipopolysaccharide, as well as H. pylori, induces NO-mediated methylation, indicating that other inflammation inducers beside H. pylori might induce aberrant methylation of runx3.  相似文献   

9.
髓样分化因子(myeloid differentiation factor 88,MyD88)是TLR(toll-like receptor)信号通路的关键接头蛋白,在先天性免疫中具有重要作用。通过RACE-RCR技术克隆了奥利亚罗非鱼(Oreochromis aureusMyD88基因cDNA全长序列(GenBank登录号:JN032017)。序列分析表明,奥利亚罗非鱼MyD88 基因全长为1 611 bp,其中包括155 bp的5’非编码区,589 bp的3’非编码区和867 bp的编码区,编码288个氨基酸残基。MyD88蛋白N端具有死亡结构域,C端具有TIR结构域。同源性分析表明,奥利亚罗非鱼MyD88氨基酸序列与鳜鱼(Siniperca chuats)相似性最高,为85.8%,与其他鱼类相似性为70%~82%,与哺乳动物相似性为63%~66%;系统进化树分析表明,奥利亚罗非鱼MyD88与同属鲈形目的鳜鱼、大黄鱼(Larimichthys crocea)聚在一起。采用实时定量PCR方法检测MyD88在奥利亚罗非鱼各组织中的表达情况。结果显示,MyD88在所有被测组织中都有表达,其中表达量最高的是卵巢,其次在小肠、脾、肝、肾、鳃和血液中有较高的表达量,肌肉、精巢组织中表达量最低。本研究可为进一步探讨MyD88在奥利亚罗非鱼TLR信号通路中的作用奠定一定的基础。  相似文献   

10.
11.
The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.  相似文献   

12.
MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S. aureus infection in MyD88 bone marrow chimaera mice. Interestingly, chimaeras where MyD88 was present in the CNS, but not bone marrow-derived cells, mounted pro-inflammatory mediator expression profiles and neutrophil recruitment equivalent to or exceeding that detected in WT (wild-type) mice. These results implicate CNS MyD88 as essential in eliciting the initial wave of inflammation during the acute response to parenchymal infection. Microarray analysis of infected MyD88 KO compared with WT mice revealed a preponderance of differentially regulated genes involved in apoptotic pathways, suggesting that the extensive tissue damage characteristic of brain abscesses from MyD88 KO mice could result from dysregulated apoptosis. Collectively, the findings of the present study highlight a novel mechanism for CNS-resident cells in initiating a protective innate immune response in the infected brain and, in the absence of MyD88 in this compartment, immunity is compromised.  相似文献   

13.
Helicobacter pylori, an important human pathogen, is capable of causing persistent infection with minimal immune response. The first line of defense during H. pylori infection is through gastric epithelial cells that present TLR, A family of bacterial proteins that share homology with the Toll/IL‐1 receptor (TIR) domain were identified. Bacterial TIR proteins (BTP) mimic human TIR domain proteins and act on myeloid differentiation primary response gene 88 (MyD88) signaling pathways to suppress TLR signaling. H. pylori may also produce a similar protein. A putative H. pylori BTP was found based on sequence homology. The corresponding gene hp1437 was inserted into an expression vector in fusion with an N‐terminal cleavable 6his‐tag. The recombinant protein, 6his‐HP1437, was purified using nickel affinity chromatography with a yield of 8 mg/L culture. Oligomerization of HP1437 was investigated by size‐exclusion chromatography. It was found that HP1437 forms dimers in solution similar to other BTPs. Furthermore, glutathione S‐transferase pull down assays identified an interaction between HP1437 and human TIR domain adaptor MyD88. These findings suggest that HP1437 has the characteristic features of BTPs and may play a direct role in reducing immune response against H. pylori by binding to MyD88 and pave the way for an in‐depth characterization of this putative novel H. pylori virulence factor.  相似文献   

14.
Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi). Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88). An alternative spliced form of MyD88 is called MyD88 short (MyD88s) and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis.  相似文献   

15.
Huang CH  Chuang MH  Lo WL  Wu MS  Wu YH  Wu DC  Chiou SH 《Biochimie》2011,93(7):1115-1123
The development of various gastrointestinal diseases was suggested to be associated with chronic inflammation as a consequence of Helicobacter pylori (H. pylori) infection. Our previous studies showed that an antioxidant protein alkylhydroperoxide reductase (AhpC) is an abundant and important antioxidant protein present in H. pylori. In this study we have explored the potential of utilizing antibodies to AhpC for detection of patients who are at high risks of evolving into severe outcomes of gastric malignancies after H. pylori infection. The correlation between AhpC and extents of inflammatory damage in tissues was demonstrated by immunoblotting assays and endoscopic examinations. Oxidative stress-induced high-molecular-weight (HMW) AhpC with chaperone activity in vivo was further investigated by co-immunoprecipitation, 2-dimensional gel electrophoresis (2-DE) followed by nano-liquid chromatography coupled tandem mass spectrometry (nanoLC-MS/MS). We found AhpC was consistently expressed in higher amounts in H. pylori strains isolated from patients with gastric cancer (GC) than gastritis (GA). Immunological analysis of seropositivity for AhpC indicated that positive diagnostic rates for H. pylori-infected patients with GA, gastric ulcer (GU) and GC were 68% (15/22), 100% (50/50) and 100% (50/50), respectively. In great contrast to low-molecular-weight (LMW) AhpC, HMW AhpC with chaperone function was found to distribute inside of H. pylori cells. We also found that LMW forms of AhpC were recognized by serum antibodies from GA patients whereas HMW forms of AhpC reacted mainly with those from GU and GC patients. Based on the significant difference between AhpC isolated from strains of GC and GA, it is conceivable that AhpC of H. pylori may prove to be useful as a prognostic or diagnostic protein marker to monitor varied clinical manifestations of gastrointestinal patients infected with H. pylori.  相似文献   

16.
17.
Helicobacter pylori heat shock protein 60 (HpHsp60) was first identified as an adhesion molecule associated with H. pylori infection. Here we have analyzed the structure of HpHsp60 via amino acid BLAST, circular dichroism, and electrophoresis and the results indicate that most recombinant HpHsp60 molecules exist as dimers or tetramers, which is quite different from Escherichia coli Hsp60. Treatment of human monocytic cells THP-1 with HpHsp60 was found to up-regulate a panel of cytokines including IL-1α, IL-8, IL-10, IFN-γ, TNF-α, TGF-β, GRO, and RANTES. Carboxymethylated HpHsp60 molecules with a switched oligomeric status were able to further enhance NF-κB-mediated IL-8 and TNF-α secretion in THP-1 cells compared to unmodified HpHsp60 molecules. These results indicated that the oligomeric status of HpHsp60s might have an important role in regulating host inflammation and thus help facilitate H. pylori persistent infection.  相似文献   

18.
Angiostrongylus cantonensis infection is a major cause of eosinophilic meningitis (EM). Severe cases or cases that involve infants and children present poor prognoses. MicroRNAs (miRNAs), which are important regulators of gene expression in many biological processes, were recently found to be regulators of the host response to infection by parasites; however, their roles in brain inflammation caused by A. cantonensis are still unclear. The current study confirmed that miR-155-5p peaked at 21 days after A. cantonensis infection, and its expression was positively correlated with the concentration of excretory and secretory products (ESPs). We found that miR-155-5p knockdown lentivirus successfully ameliorated brain injury and downregulated the expression of major basic protein (MBP) in vivo, and the number of eosinophils in CSF (and the percentage of eosinophils in peripheral blood were also decreased in the miR-155-5p knockdown group. Moreover, the expression of several eosinophilic inflammation cytokines such as CCL6/C10, ICAM-1, and MMP9, declined after the miR-155-5p knockdown. SOCS1 protein, which is an important negative regulator of inflammation activation, was identified as a direct miR-155-5p target. We further detected the effect of miR-155-5p knockdown on phosphorylated-STAT3 and phosphorylated-p65 proteins, which were found to be negatively regulated by SOCS1 and play an important role in regulating the inflammatory response. We found that miR-155-5p knockdown decreased the activity of p-STAT3 and p-p65, thereby leading to lower expression of MMP9 and TSLP proteins, which were closely related to the chemotaxis and infiltration of eosinophils. Interestingly, the inhibition of p-STAT3 or p-p65 was found to induce the downregulation of miR-155-5p in an opposite manner. These observations suggest that a positive feedback loop was formed between miR-155-5p, STAT3, and NF-κB in A. cantonensis infection and that miR-155-5p inhibition might provide a novel strategy to attenuate eosinophilic meningitis.  相似文献   

19.
Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88−/− mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88−/− mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m−/−) mice injected i.v. with MyD88−/− natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.  相似文献   

20.
The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates β-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3′-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号