共查询到20条相似文献,搜索用时 15 毫秒
1.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination. 相似文献
2.
Coevolution of a ligand and its receptor is critical for maintaining their function in different species, but how ligand and its receptor coevolve is poorly understood. The axon guidance molecule Netrin and its receptor Frazzled (Fra) are useful to study the mechanisms of ligand–receptor coevolution. Here, we have applied codon substitution models to identify positive selection of the netrin and fra genes. The sites under positive selection in netrin and fra were detected in same lineage, such as nematode, dipteran, hymenopteran, hemichordate, and teleost. Several amino acid residues that are under positive selection were identified in the interaction domains. Here we provide evidence that positive selection is essential for the coevolution of Netrin and Fra during central nervous system evolution. 相似文献
3.
4.
TIME COURSE OF BIOCHEMICAL AND IMMUNOHISTOLOGICAL ALTERATIONS DURING EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS 总被引:2,自引:0,他引:2
DANIELA A SLAVIN ANA E BUCHER ALICIA L DEGANO NÉSTOR W SORIA GERMAN A ROTH 《Neurochemistry international》1996,29(6):597-605
A comprehensive biochemical, immunological and histological study was undertaken during different stages of experimental allergic encephalomyelitis (EAE). Wistar rats with EAE induced by sensitization with bovine myelin showed a maximum decrease of body weight 14–16 days post-inoculation (dpi), coincident with the appearance of the paralysis symptom (acute period). Quantitation of some brain components indicated a temporal dissociation among the alterations observed. The higher diminution of myelin basic protein (MBP) occurred at 6 dpi and then increased to reach 21 dpi, a normal value. Also, the activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase was reduced by 40% with respect to control animals only at 6 dpi. The total lipid content was normal; however, among the individual lipids, sulfatides were principally degraded during the acute stage but the amount of cerebrosides was decreased during the recovery period (29–40 dpi). Free cholesterol was similar in both groups of animals, whereas cholesterol esters were detected in EAE animals from 14 to 40 dpi. Central nervous system meningeal and parenchymal infiltration with mononuclear cells was recognized principally at 14 dpi, but some of cells were still present at 40 dpi. Deposits of immunoglobulins in the infiltrated regions as well as in spinal cord motor neurons were observed among 14–29 dpi. Total circulating antibodies to MBP began to increase at 14 dpi, reaching a plateau at 21 dpi and then maintaining this value until 40 dpi. However, the population of anti-MBP antibodies that also recognizes the neuronal protein synapsin was only present at 14 dpi. The present results suggest that the neurological symptoms can be related to some early changes in the myelin membrane followed by alterations involving neuronal structures. The existence of immunological factors against some epitopes in MBP that also recognize a synaptosomal protein might account, at least in part, for the axonal damage and disruption of the normal interneuronal activity in EAE and lead together with the alterations in some specific myelin constituents and the concomitant CNS inflammatory process to the observed hindlimb paralysis. Copyright © 1996 Elsevier Science Ltd 相似文献
5.
CB2, the cannabinoid receptor expressed primarily on hematopoietic cells and activated microglia, mediates the immunoregulatory functions of cannabinoids. The involvement of CB2 in EAE has been demonstrated by using both endogenous and exogenous ligands. We showed previously that CB2 selective agonists inhibit leukocyte rolling and adhesion to CNS microvasculature and ameliorate clinical symptom in both chronic and remitting-relapsing EAE models. Here we showed that Gp1a, a highly selective CB2 agonist, with a four log higher affinity for CB2 than CB1, reduced clinical scores and facilitated recovery in EAE in conjunction with long term reduction in demyelination and axonal loss. We also established that Gp1a affected EAE through at least two different mechanisms, i.e. an early effect on Th1/Th17 differentiation in peripheral immune organs, and a later effect on the accumulation of pathogenic immune cells in the CNS, associated with reductions in the expression of CNS and T cell chemokine receptors, chemokines and adhesion molecules. This is the first report on the in vivo CB2-mediated Gp1a inhibition of Th17/Th1 differentiation. We also confirmed the Gp1a-induced inhibition of Th17/Th1 differentiation in vitro, both in non-polarizing and polarizing conditions. The CB2-induced inhibition of Th17 differentiation is highly relevant in view of recent studies emphasizing the importance of pathogenic self-reactive Th17 cells in EAE/MS. In addition, the combined effect on Th17 differentiation and immune cell accumulation into the CNS, emphasize the relevance of CB2 selective ligands as potential therapeutic agents in neuroinflammation. 相似文献
6.
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways. 相似文献
7.
LNX1 and LNX2 are E3 ubiquitin ligases that can interact with Numb — a key regulator of neurogenesis and neuronal differentiation. LNX1 can target Numb for proteasomal degradation, and Lnx mRNAs are prominently expressed in the nervous system, suggesting that LNX proteins play a role in neural development. This hypothesis remains unproven, however, largely because LNX proteins are present at very low levels in vivo. Here, we demonstrate expression of both LNX1 and LNX2 proteins in the brain for the first time. We clarify the cell-type specific expression of LNX isoforms in both the CNS and PNS, and identify a novel LNX1 isoform. Using luciferase reporter assays, we show that the 5′ untranslated region of the Lnx1_variant 2 mRNA, that generates the LNX1p70 isoform, strongly suppresses protein production. This effect is mediated in part by the presence of upstream open reading frames (uORFs), but also by a sequence element that decreases both mRNA levels and translational efficiency. By contrast, uORFs do not negatively regulate LNX1p80 or LNX2 expression. Instead, we find some evidence that protein turnover via proteasomal degradation may influence LNX1p80 levels in cells. These observations provide plausible explanations for the low levels of LNX1 proteins detected in vivo. 相似文献
8.
9.
Takuya Kitamura Tatsuro NaganumaKensuke Abe Kanae NakaharaYusuke Ohno Akio Kihara 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(8):1395-1401
The accumulation of reactive aldehydes is implicated in the development of several disorders. Aldehyde dehydrogenases (ALDHs) detoxify aldehydes by oxidizing them to the corresponding carboxylic acids. Among the 19 human ALDHs, ALDH3A2 is the only known ALDH that catalyzes the oxidation of long-chain fatty aldehydes including C16 aldehydes (hexadecanal and trans-2-hexadecenal) generated through sphingolipid metabolism. In the present study, we have identified that ALDH3B1 is also active in vitro toward C16 aldehydes and demonstrated that overexpression of ALDH3B1 restores the sphingolipid metabolism in the ALDH3A2-deficient cells. In addition, we have determined that ALDH3B1 is localized in the plasma membrane through its C-terminal dual lipidation (palmitoylation and prenylation) and shown that the prenylation is required particularly for the activity toward hexadecanal. Since knockdown of ALDH3B1 does not cause further impairment of the sphingolipid metabolism in the ALDH3A2-deficient cells, the likely physiological function of ALDH3B1 is to oxidize lipid-derived aldehydes generated in the plasma membrane and not to be involved in the sphingolipid metabolism in the endoplasmic reticulum. 相似文献
10.
Biao Cheng Hao Gong Hongwen Xiao Robert B. Petersen Ling Zheng Kun Huang 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases.Scope of review
In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof.Major conclusions
Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity.General significance
Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases. 相似文献11.
Olaf Maier Roman Fischer Cristina Agresti Klaus Pfizenmaier 《Biochemical and biophysical research communications》2013
The neuroprotective role of TNF receptor 2 (TNFR2) has been shown in various studies. However, a direct role of TNFR2 in oligodendrocyte function has not yet been demonstrated. Using primary oligodendrocytes of transgenic mice expressing human TNFR2, we show here that TNFR2 is primarily expressed on oligodendrocyte progenitor cells. Interestingly, preconditioning with a TNFR2 agonist protects these cells from oxidative stress, presumably by increasing the gene expression of distinct anti-apoptotic and detoxifying proteins, thereby providing a potential mechanism for the neuroprotective role of TNFR2 in oligodendrocyte progenitor cells. 相似文献
12.
Elena I. Posse de Chaves 《生物化学与生物物理学报:生物膜》2006,1758(12):1995-2015
Simple sphingolipids such as ceramide, sphingosine and sphingosine 1-phosphate are key regulators of diverse cellular functions. Their roles in the nervous system are supported by extensive evidence derived primarily from studies in cultured cells. More recently animal studies and studies with human samples have revealed the importance of ceramide and its metabolites in the development and progression of neurodegenerative disorders. The roles of sphingolipids in neurons and glial cells are complex, cell dependent, and many times contradictory. In this review I will summarize the effects elicited by ceramide and ceramide metabolites in cells of the nervous system, in particular those effects related to cell survival and death, emphasizing the molecular mechanisms involved. I also discuss recent evidence for the implication of sphingolipids in the development and progression of certain dementias. 相似文献
13.
Xianlin Han 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(8):774-783
Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a well-developed technology for global lipid analysis, which identifies and quantifies individual lipid molecular species directly from lipid extracts of biological samples. By using this technology, we have revealed three marked changes of lipids in brain samples of subjects with mild cognitive impairment of Alzheimer's disease including sulfatides, ceramides, and plasmalogens. Further studies using MDMS-SL lead us to the identification of the potential biochemical mechanisms responsible for the altered lipids at the disease state, which are thoroughly discussed in this minireview. Specifically, in studies to identify the causes responsible for sulfatide depletion at the mild cognitive impairment stage of Alzheimer's disease, we have found that apolipoprotein E is associated with sulfatide transport and mediates sulfatide homeostasis in the nervous system through lipoprotein metabolism pathways and that alterations in apolipoprotein E-mediated sulfatide trafficking can lead to sulfatide depletion in the brain. Collectively, the results obtained from lipidomic analyses of brain samples provide important insights into the biochemical mechanisms underlying the pathogenesis of Alzheimer's disease. 相似文献
14.
Thomas N. Wight Michael G. Kinsella Stephen P. Evanko Susan Potter-Perigo Mervyn J. Merrilees 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM.Scope of review
The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted.Major conclusions
Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease.Significance
ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. 相似文献15.
Yasuyuki Kihara Takehiko Yokomizo Akiko Kunita Masashi Fukayama Takao Shimizu 《Biochemical and biophysical research communications》2010,394(3):673-6298
Leukotriene B4 (LTB4) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB4. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and TH1/TH17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1−/− mice had delayed onset and less severe symptoms of EAE than BLT1+/+ mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1+/+, but not BLT1−/− mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-γ, TNF-α, IL-17 and IL-6 were impaired in BLT1−/− cells, as compared with BLT1+/+ cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and TH1/TH17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other TH17-mediated diseases. 相似文献
16.
Emily M. LynesThomas Simmen 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(10):1893-1905
The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM. 相似文献
17.
Massimo Micaroni Giuseppe Perinetti Daniele Di Giandomenico Alexander Spaar 《Experimental cell research》2010,316(13):2071-2086
The mechanisms of secretory transport through the Golgi apparatus remain an issue of debate. The precise functional importance of calcium ions (Ca2+) for intra-Golgi transport has also been poorly studied. Here, using different approaches to measure free Ca2+ concentrations in the cell cytosol ([Ca2+]cyt) and inside the lumen of the Golgi apparatus ([Ca2+]GA), we have revealed transient increases in [Ca2+]cyt during the late phase of intra-Golgi transport that are concomitant with a decline in the maximal [Ca2+]GA restoration ability. Thus, this redistribution of Ca2+ from the Golgi apparatus into the cytosol during the movement of cargo through the Golgi apparatus appears to have a role in intra-Golgi transport, and mainly in the late Ca2+-dependent phase of SNARE-regulated fusion of Golgi compartments. 相似文献
18.
Although commercial production of polychlorinated biphenyls (PCBs) was banned in 1979, PCBs continue to be an environmental and health concern due to their high bioaccumulation and slow degradation rates. In fact, PCBs are still present in our food supply (fish, meat, and dairy products). In laboratory animals, exposure to single PCB congener or to mixtures of different congeners induces a variety of physiological alterations. PCBs cross the placenta and even exposure at low level is harmful for the foetus by leading to neurodevelopment alterations. Serotonin system which regulates many physiological functions from platelet activation to high cerebral processes and neurodevelopment is one of the targets of PCBs toxicity. The effects of PCBs exposure on serotonin system have been investigated although to a lesser extent compared to its effect in other neurotransmitter systems. This review provides a summary of the results concerning the impact of PCBs exposure (in vitro and in vivo) on serotonin system. Further research is needed to correlate specific deficits with PCB-induced changes in the serotonin system. 相似文献
19.
Glycosphingolipids (GSLs) can interact with each other by homotypic or heterotypic trans carbohydrate–carbohydrate interactions across apposed membranes, resulting in cell–cell adhesion. This interaction can also provide an extracellular signal which is transmitted to the cytosolic side, thus forming a glycosynapse between two cells. The two major GSLs of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I3-sulfate (SGC), are an example of a pair of GSLs which can participate in these trans carbohydrate–carbohydrate interactions and trigger transmembrane signaling. These GSLs could interact across apposed oligodendrocyte membranes at high cell density or when a membranous process of a cell contacts itself as it wraps around the axon. GalC and SGC also face each other in the apposed extracellular surfaces of the multilayered myelin sheath. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication. 相似文献
20.
Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain 总被引:25,自引:0,他引:25
More than 20 matrix metalloproteinases (MMPs) and four of their endogenous tissue inhibitors (TIMPs) act together to control tightly temporally restricted, focal proteolysis of extracellular matrix. In the neurons of the adult brain several components of the TIMP/MMP system are expressed and are responsive to changes in neuronal activity. Furthermore, functional studies, especially involving blocking of MMP activities, along with the identification of MMP substrates in the brain strongly suggest that this enzymatic system plays an important physiological role in adult brain neurons, possibly being pivotal for neuronal plasticity. 相似文献