首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two thioredoxin h isoforms, HvTrxh1 and HvTrxh2, were identified in two and one spots, respectively, in a proteome analysis of barley (Hordeum vulgare) seeds based on 2D gel electrophoresis and MS. HvTrxh1 was observed in 2D gel patterns of endosperm, aleurone layer and embryo of mature barley seeds, and HvTrxh2 was present mainly in the embryo. During germination, HvTrxh2 decreased in abundance and HvTrxh1 decreased in the aleurone layer and endosperm but remained at high levels in the embryo. On the basis of MS identification of the two isoforms, expressed sequence tag sequences were identified, and cDNAs encoding HvTrxh1 and HvTrxh2 were cloned by RT-PCR. The sequences were 51% identical, but showed higer similarity to thioredoxin h isoforms from other cereals, e.g. rice Trxh (74% identical with HvTrxh1) and wheat TrxTa (90% identical with HvTrxh2). Recombinant HvTrxh1, HvTrxh2 and TrxTa were produced in Escherichia coli and purified using a three-step procedure. The activity of the purified recombinant thioredoxin h isoforms was demonstrated using insulin and barley alpha-amylase/subtilisin inhibitor as substrates. HvTrxh1 and HvTrxh2 were also efficiently reduced by Arabidopsis thaliana NADP-dependent thioredoxin reductase (NTR). The biochemical properties of HvTrxh2 and TrxTa were similar, whereas HvTrxh1 had higher insulin-reducing activity and was a better substrate for Arabidopsis NTR than HvTrxh2, with a Km of 13 micro m compared with 44 micro m for HvTrxh2. Thus, barley seeds contain two distinct thioredoxin h isoforms which differ in temporal and spatial distribution and kinetic properties, suggesting that they may have different physiological roles.  相似文献   

2.
The NADPH-dependent thioredoxin reductase (NTR)/thioredoxin (Trx) system catalyzes disulfide bond reduction in the cytoplasm and mitochondrion. Trx h is suggested to play an important role in seed development, germination, and seedling growth. Plants have multiple isoforms of Trx h and NTR; however, little is known about the roles of the individual isoforms. Trx h isoforms from barley (Hordeum vulgare) seeds (HvTrxh1 and HvTrxh2) were characterized previously. In this study, two NTR isoforms (HvNTR1 and HvNTR2) were identified, enabling comparison of gene expression, protein appearance, and interaction between individual NTR and Trx h isoforms in barley embryo and aleurone layers. Although mRNA encoding both Trx h isoforms is present in embryo and aleurone layers, the corresponding proteins differed in spatiotemporal appearance. HvNTR2, but not HvNTR1, gene expression seems to be regulated by gibberellic acid. Recombinant HvNTR1 and HvNTR2 exhibited virtually the same affinity toward HvTrxh1 and HvTrxh2, whereas HvNTR2 has slightly higher catalytic activity than HvNTR1 with both Trx h isoforms, and HvNTR1 has slightly higher catalytic activity toward HvTrxh1 than HvTrxh2. Notably, both NTRs reduced Trx h at the acidic conditions residing in the starchy endosperm during germination. Interspecies reactions between the barley proteins and Escherichia coli Trx or Arabidopsis thaliana NTR, respectively, occurred with 20- to 90-fold weaker affinity. This first investigation of regulation and interactions between members of the NTR/Trx system in barley seed tissues suggests that different isoforms are differentially regulated but may have overlapping roles, with HvNTR2 and HvTrxh1 being the predominant isoforms in the aleurone layer.  相似文献   

3.
H-type thioredoxins (Trxs) constitute a particularly large Trx sub-group in higher plants. Here, the crystal structures are determined for the two barley Trx h isoforms, HvTrxh1 and HvTrxh2, in the partially radiation-reduced state to resolutions of 1.7 A, and for HvTrxh2 in the oxidized state to 2.0 A. The two Trxs have a sequence identity of 51% and highly similar fold and active-site architecture. Interestingly, the four independent molecules in the crystals of HvTrxh1 form two relatively large and essentially identical protein-protein interfaces. In each interface, a loop segment of one HvTrxh1 molecule is positioned along a shallow hydrophobic groove at the primary nucleophile Cys40 of another HvTrxh1 molecule. The association mode can serve as a model for the target protein recognition by Trx, as it brings the Met82 Cgamma atom (gamma position as a disulfide sulfur) of the bound loop segment in the proximity of the Cys40 thiol. The interaction involves three characteristic backbone-backbone hydrogen bonds in an antiparallel beta-sheet-like arrangement, similar to the arrangement observed in the structure of an engineered, covalently bound complex between Trx and a substrate protein, as reported by Maeda et al. in an earlier paper. The occurrence of an intermolecular salt bridge between Glu80 of the bound loop segment and Arg101 near the hydrophobic groove suggests that charge complementarity plays a role in the specificity of Trx. In HvTrxh2, isoleucine corresponds to this arginine, which emphasizes the potential for specificity differences between the coexisting barley Trx isoforms.  相似文献   

4.
5.
6.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   

7.
Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance.  相似文献   

8.
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields FV/FM, whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high FV/FM of ∼0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.  相似文献   

9.
Alexey V. Cherepanov 《BBA》2004,1656(1):1-31
A novel freeze-quench instrument with a characteristic «dead-time» of 137±18 μs is reported. The prototype has several key features that distinguish it from conventional freeze-quench devices and provide a significant improvement in time resolution: (a) high operating pressures (up to 400 bar) result in a sample flow with high linear rates (up to 200 m s−1); (b) tangential micro-mixer with an operating volume of ∼1 nl yields short mixing times (up to 20 μs); (c) fast transport between the mixer and the cryomedium results in short reaction times: the ageing solution exits the mixer as a free-flowing jet, and the chemical reaction occurs “in-flight” on the way to the cryomedium; (d) a small jet diameter (∼20 μm) and a high jet velocity (∼200 m s−1) provide high sample-cooling rates, resulting in a short cryofixation time (up to 30 μs). The dynamic range of the freeze-quench device is between 130 μs and 15 ms. The novel tangential micro-mixer efficiently mixes viscous aqueous solutions, showing more than 95% mixing at η≤4 (equivalent to protein concentrations up to 250 mg ml−1), which makes it an excellent tool for the preparation of pre-steady state samples of concentrated protein solutions for spectroscopic structure analysis. The novel freeze-quench device is characterized using the reaction of binding of azide to metmyoglobin from horse heart. Reaction samples are analyzed using 77 K optical absorbance spectroscopy, and X-band EPR spectroscopy. A simple procedure of spectral analysis is reported that allows (a) to perform a quantitative analysis of the reaction kinetics and (b) to identify and characterize novel reaction intermediates. The reduction of dioxygen by the bo3-type quinol oxidase from Escherichia coli is assayed using the MHQ technique. In these pilot experiments, low-temperature optical absorbance measurements show the rapid oxidation of heme o3 in the first 137 μs of the reaction, accompanied by the formation of an oxo-ferryl species. X-band EPR spectroscopy shows that a short-living radical intermediate is formed during the oxidation of heme o3. The radical decays within ∼1 ms concomitant with the oxidation of heme b, and can be attributed to the PM reaction intermediate converting to the oxoferryl intermediate F. The general field of application of the freeze-quench methodology is discussed.  相似文献   

10.
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400 h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD = −3.1 MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5 °C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20–30 days Tmax ≥ 35 °C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r2 from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.  相似文献   

11.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

12.

Background and Aims

Legumes overcome nitrogen limitations by entering into a mutualistic symbiosis with N2-fixing bacteria (rhizobia). Fully compatible associations (effective) between Trifolium spp. and Rhizobium leguminosarum bv. trifolii result from successful recognition of symbiotic partners in the rhizosphere, root hair infection and the formation of nodules where N2-fixing bacteroids reside. Poorly compatible associations can result in root nodule formation with minimal (sub-optimal) or no (ineffective) N2-fixation. Despite the abundance and persistence of strains in agricultural soils which are poorly compatible with the commercially grown clover species, little is known of how and why they fail symbiotically. The aims of this research were to determine the morphological aberrations occurring in sub-optimal and ineffective clover nodules and to determine whether reduced bacteroid numbers or reduced N2-fixing activity is the main cause for the Sub-optimal phenotype.

Methods

Symbiotic effectiveness of four Trifolium hosts with each of four R. leguminosarum bv. trifolii strains was assessed by analysis of plant yields and nitrogen content; nodule yields, abundance, morphology and internal structure; and bacteroid cytology, quantity and activity.

Key Results

Effective nodules (Nodule Function 83–100 %) contained four developmental zones and N2-fixing bacteroids. In contrast, Sub-optimal nodules of the same age (Nodule Function 24–57 %) carried prematurely senescing bacteroids and a small bacteroid pool resulting in reduced shoot N. Ineffective-differentiated nodules carried bacteroids aborted at stage 2 or 3 in differentiation. In contrast, bacteroids were not observed in Ineffective-vegetative nodules despite the presence of bacteria within infection threads.

Conclusions

Three major responses to N2-fixation incompatibility between Trifolium spp. and R. l. trifolii strains were found: failed bacterial endocytosis from infection threads into plant cortical cells, bacteroid differentiation aborted prematurely, and a reduced pool of functional bacteroids which underwent premature senescence. We discuss possible underlying genetic causes of these developmental abnormalities and consider impacts on N2-fixation of clovers.  相似文献   

13.
Two Ni(II) complexes of the dianionic ligands, Mebpb2−, [H2Mebpb = N,N′-bis(pyridine-2-carboxamido)-4-methylbenzene] and Mebqb2−, [H2Mebqb = N,N′-bis(quinoline-2-carboxamido)-4-methylbenzene] have been synthesized and characterized by elemental analyses, IR, and UV-Vis spectroscopy. The crystal and molecular structures of [Ni(Mebpb)], (1), and [Ni(Mebqb)], (2), were determined by X-ray crystallography. Both complexes exhibit distorted square-planar NiN4 coordination figures with two short and two long Ni-N bonds (Ni-N ∼1.84 and ∼1.95 Å, respectively). The electrochemical behavior of these complexes with the goal of evaluating the structural effects on the redox properties has been studied.  相似文献   

14.
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg1−x Zn1+xO2 solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4 h 15 min reaction at 188 °C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.  相似文献   

15.
The electrophilic reactivity of the bioactive marine sponge natural product halenaquinone has been investigated by reaction with the biomimetic nucleophiles N-acetyl-l-cysteine and Nα-acetyl-l-lysine. While cysteine reacted at the vacant quinone positions C-14 and C-15, lysine was found to react preferentially at the keto-furan position C-1. A small library of analogues was prepared by reaction of halenaquinone with primary amines, and evaluated against a range of biological targets including phospholipase A2, farnesyltransferases (FTases) and Plasmodium falciparum. Geranylamine analogue 11 exhibited the most potent activity towards FTases (IC50 0.017-0.031 μM) and malaria (IC50 0.53-0.62 μM).  相似文献   

16.
Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (∼14–15 years) compared to the other two sites (∼6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m−2 d−1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.  相似文献   

17.
The formation of N-acylphosphatidylethanolamine by N-acylation of phosphatidylethanolamine (PE) is the initial step in the biosynthetic pathway of bioactive N-acylethanolamines, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. We recently cloned a rat enzyme capable of catalyzing this reaction, and referred to the enzyme as Ca2+-independent N-acyltransferase (iNAT). Here we report cDNA cloning and characterization of human and mouse iNATs. We cloned iNAT-homologous cDNAs from human and mouse testes, and overexpressed them in COS-7 cells. The purified recombinant proteins abstracted an acyl group from both sn-1 and sn-2 positions of phosphatidylcholine, and catalyzed N-acylation of PE as well as phospholipase A1/A2-like hydrolysis. The iNAT activity was mainly detected in soluble rather than particulate fractions, and was only slightly increased by Ca2+. These results demonstrated that the human and mouse homologues function as iNAT. As for the organ distribution of iNAT, human testis and pancreas and mouse testis exhibited by far the highest expression level, suggesting its physiological importance in the specific organs. Moreover, mutagenesis studies showed crucial roles of His-154 and Cys-241 of rat iNAT in the catalysis and a possible role of the N-terminal domain in membrane association or protein–protein interaction.  相似文献   

18.
4-Nitrophenyl penta-N-acetyl-β-chitopentaoside [(GlcNAc)5-pNP] was hydrolyzed by a family GH-19 class II barley chitinase, and the enzymatic reaction was monitored by real-time ESIMS. The wild-type enzyme hydrolyzed (GlcNAc)5-pNP producing predominantly (GlcNAc)3-pNP and a lesser amount of (GlcNAc)2-pNP, indicating that the (GlcNAc)5 portion of the substrate binds predominantly to subsites −2 ∼ +3 and less frequently to −3 ∼ +2. However, (GlcNAc)2-pNP was mainly produced from (GlcNAc)5-pNP by mutated enzymes, in which Trp72 and Trp82 located at +3/+4 were substituted with alanine (W72A and W72A/W82A), indicating that the (GlcNAc)5 portion of the substrate binds predominantly to subsites −3 ∼ +2 of the mutants. The mutations of the tryptophan residues resulted in a significant shift of the substrate-binding mode to the glycon side, supporting the idea that the indole side chain of Trp72 interacts with the 4-nitrophenyl moiety of the substrate at subsite +4.  相似文献   

19.

Background and Aims

Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca).

Methods

Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA).

Key Results

Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner.

Conclusions

The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing ca influences ecosystem water use.  相似文献   

20.
As part of the quantitative investigations into the bioenergetic relationships of the Barents Sea capelin, Mallotus villosus villosus (Müller, 1776), resting metabolic rates were examined in the oviferous and post-spawning fish in order to provide insights to aerobic scaling and the basal energetic costs associated with reproduction. Aerobic scaling of the different categories of sexually mature fish (body weight, W=13-54 g) could be expressed as: QO2=0.106W1.049 (oviferous fish; N=11), QO2=0.411W0.430 (post-spawning females; N=9), and QO2=0.075W1.012 (post-spawning males; N=14), where QO2 is the oxygen consumption (ml O2 h−1) per fish. The weight specific oxygen consumption of oviferous capelin was about 30% higher (∼125 ml O2 kg−1 h−1) compared to those of the post-spawning fish (79-87 ml O2 kg−1 h−1). The results are discussed in context with other empirical studies on the aerobic scaling and metabolic costs involved with the build-up of roe in the fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号