首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) has an Ig-like domain and the enzyme stability is dependent to calcium. In this study the effect of calcium on the structure and stability of the wild-type enzyme and the truncated form (the wild-type enzyme without Ig-like domain, AaCel9AΔN) was investigated. Fluorescence quenching results indicated that calcium increased and decreased the rigidity of the wild-type and truncated enzymes, respectively. RMSF results indicated that AaCel9A has two flexible regions (regions A and B) and deleting the Ig-like domain increased the truncated enzyme stability by decreasing the flexibility of region B probably through increasing the hydrogen bonds. Calcium contact map analysis showed that deleting the Ig-like domain decreased the calcium contacting residues and their calcium binding affinities, especially, in region B which has a role in calcium binding site in AaCel9A. Metal depletion and activity recovering as well as stability results showed that the structure and stability of the wild-type and truncated enzymes are completely dependent on and independent of calcium, respectively. Finally, one can conclude that the deletion of Ig-like domain makes AaCel9AΔN independent of calcium via decreasing the flexibility of region B through increasing the hydrogen bonds. This suggests a new role for the Ig-like domain which makes AaCel9A structure dependent on calcium.  相似文献   

2.
Detailed understanding of cell wall degrading enzymes is important for their modeling and industrial applications, including in the production of biofuels. Here we used Cel9A, a processive endocellulase from Thermobifida fusca, to demonstrate that cellulases that contain a catalytic domain (CD) attached to a cellulose binding module (CBM) by a flexible linker exist in three distinct molecular states. By measuring the ability of a soluble competitor to reduce Cel9A activity on an insoluble substrate, we show that the most common state of Cel9A is bound via its CBM, but with its CD unoccupied by the insoluble substrate. These findings are relevant for kinetic modeling and microscopy studies of modular glycoside hydrolases.  相似文献   

3.
Molecular docking and molecular dynamics (MD) simulations were used to investigate the binding of a cellodextrin chain in a crystal-like conformation to the carbohydrate-binding module (CBM) of Cel9A from Thermobifida fusca. The fiber was found to bind to the CBM in a single and well-defined configuration in-line with the catalytic cleft, supporting the hypothesis that this CBM plays a role in the catalysis by feeding the catalytic domain (CD) with a polysaccharide chain. The results also expand the current known list of residues involved in the binding. The polysaccharide-protein attachment is shown to be mediated by five amine/amide-containing residues. E478 and E559 were found not to interact directly with the sugar chain; instead they seem to be responsible to stabilize the binding motif via hydrogen bonds.  相似文献   

4.
Thermobifida fusca Cel9A-90, an unusual family 9 enzyme, is a processive endoglucanase containing a catalytic domain closely linked to a family 3c cellulose binding domain (Cel9A-68) followed by a fibronectin III-like domain and a family 2 cellulose binding domain. To study its catalytic mechanism, 12 mutant genes with changes in five conserved residues of Cel9A-68 were constructed, cloned, and expressed in Escherichia coli. The purified mutant enzymes were assayed for their activities on (carboxymethyl)cellulose, phosphoric acid-swollen cellulose, bacterial microcrystalline cellulose, and 2,4-dinitrophenyl beta-D-cellobioside. They were also tested for ligand binding, enzyme processivity, and thermostability. The results clearly show that E424 functions as the catalytic acid, D55 and D58 are both required for catalytic base activity, and Y206 plays an important role in binding, catalysis, and processivity, while Y318 plays an important role in binding of crystalline cellulose substrates and is required for processivity. Several amino acids located in a loop at the end of the catalytic cleft (T245-L251) were deleted from Cel9A-68, and this enzyme showed slightly improved filter paper activity and binding to BMCC but otherwise behaved like the wild-type enzyme. The FnIII-like domain was deleted from Cel9A-90, reducing BMCC activity to 43% of the wild type.  相似文献   

5.

Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.

  相似文献   

6.
Cellulose is a linear homopolymer of beta 1-4 linked glucose residues. Chitin is similar to cellulose in structure, and can be described as cellulose with the hydroxyl group on the C2 carbon replaced by an acetylamine group. Both cellulose and chitin form tightly packed, extensively hydrogen-bonded micro-fibrils. Up to now, binding of cellulase catalytic domains (CDs) to chitin has not been reported. In this article, binding of the CDs of Thermobifida fusca Cel6A, Cel6B, Cel48A, Cel5A, and Cel9A to alpha-chitin was investigated. The CDs of endocellulases, Cel6A and Cel5A did not bind to alpha-chitin; one exocellulase, Cel48A CD bound alpha-chitin moderately well; and the exocellulase Cel6B CD and the processive endocellulase Cel9A CD bound extremely tightly to alpha-chitin. Only mutations of Cel6B W329C, W332A and G234S and Cel9A Y206F, Y206S and D261A/R378K caused weaker binding to alpha-chitin than wild-type, and all these mutations were of residues near the catalytic center. One mutant enzyme, Cel9A D261A/R378K had weak chitinase activity, but no soluble products were detected. Chitotriose and chitotetraose were docked successfully to the catalytic cleft of Cel9A. In general, the positioning of the sugar residues in the model structures matched the cellooligosaccharides in the X-ray structure. Our results show that the binding of chitin by a cellulase can provide additional information about its binding to cellulose.  相似文献   

7.
A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.  相似文献   

8.
There is a high level of conservation of tryptophans within the active site architecture of the cellulase family, whereas the function of the four tryptophans in the catalytic domain of Cel7A is unclear. By mutating four tryptophan residues in the catalytic domain of Cel7A from Penicillium piceum (PpCel7A), the binding affinity between PpCel7A and p-nitrophenol-d -cellobioside (pNPC) was reduced as determined by Michaelis–Menten constants, molecular dynamics simulations, and fluorescence spectroscopy. Furthermore, PpCel7A variants showed a reduced level of cellobiohydrolase (CBH) activity against cellulose analogs or natural cellulose. Therefore, it could be concluded four tryptophan residues in Cel7A played a critical role in substrate binding. Mutagenesis results indicated that the W390 stacking interactions at the −2 site played an essential role in facilitating substrate distortion to the −1 site. As soon as the function was altered, the mutation would inevitably affect the catalytic activity against the natural substrate. Interestingly, no clear relationship was found between the CBH activity of PpCel7A variants against pNPC and Avicel. p-Nitrophenol contains many electrophilic groups that may result in overestimation of the binding constant between tryptophan residues and pNPC in comparison with the natural substrate. Consequently, screening improved cellulase using cellulose analogs would divert attention from the target direction for lignocellulose biorefinery. Clarifying mechanism of catalytic diversity on the natural cellulose or cellulose analogs may give better insight into cellulase screening and selecting strategy.  相似文献   

9.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   

10.
Parsiegla G  Belaïch A  Belaïch JP  Haser R 《Biochemistry》2002,41(37):11134-11142
Cellulases cleave the beta-1.4 glycosidic bond of cellulose. They have been characterized as endo or exo and processive or nonprocessive cellulases according to their action mode on the substrate. Different types of these cellulases may coexist in the same glycoside hydrolase family, which have been classified according to their sequence homology and catalytic mechanism. The bacterium C. celluloyticum produces a set of different cellulases who belong mostly to glycoside hydrolase families 5 and 9. As an adaptation of the organism to different macroscopic substrates organizations and to maximize its cooperative digestion, it is expected that cellulases of these families are active on the various macroscopic organizations of cellulose chains. The nonprocessive cellulase Cel9M is the shortest variant of family 9 cellulases (subgroup 9(C)) which contains only the catalytic module to interact with the substrate. The crystal structures of free native Cel9M and its complex with cellobiose have been solved to 1.8 and 2.0 A resolution, respectively. Other structurally known family 9 cellulases are the nonprocessive endo-cellulase Cel9D from C. thermocellum and the processive endo-cellulase Cel9A from T. fusca, from subgroups 9(B1) and 9(A), respectively, whose catalytic modules are fused to a second domain. These enzymes differ in their activity on substrates with specific macroscopic appearances. The comparison of the catalytic module of Cel9M with the two other known GH family 9 structures may give clues to explain its substrate profile and action mode.  相似文献   

11.
The thermostability of cellobiohydrolase I Cel7A from Trichoderma reesei was investigated using dynamic light scattering. While the whole enzyme displayed a melting point of 59 °C, the catalytic domain obtained via papain-catalyzed proteolysis was shown to denature at 51 °C and the cellulose-binding domain (with linker attached) melted at 65-66 °C. This variation in individual melting temperatures is proposed to account for the full retention of binding capacity of Cel7A at 50 °C, along with a loss of catalytic activity observed for the catalytic domain alone. Thus, the cellulose-binding domain of Cel7A acts as a thermostabilizing domain for the enzyme. The effect of reducing agents on the protein melting behavior was also investigated.  相似文献   

12.
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the −7 to −4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.  相似文献   

13.
The genome of the thermophilic bacterium Caldicellulosiruptor bescii encodes three multimodular enzymes with identical C-terminal domain organizations containing two consecutive CBM3b modules and one glycoside hydrolase (GH) family 48 (GH48) catalytic module. However, the three proteins differ much in their N termini. Among these proteins, CelA (or C. bescii Cel9A [CbCel9A]/Cel48A) with a GH9/CBM3c binary partner in the N terminus has been shown to use a novel strategy to degrade crystalline cellulose, which leads to its outstanding cellulose-cleaving activity. Here we show that C. bescii Xyn10C (CbXyn10C), the N-terminal GH10 domain from CbXyn10C/Cel48B, can also degrade crystalline cellulose, in addition to heterogeneous xylans and barley β-glucan. The data from substrate competition assays, mutational studies, molecular modeling, and docking point analyses point to the existence of only one catalytic center in the bifunctional xylanase/β-glucanase. The specific activities of the recombinant CbXyn10C on Avicel and filter paper were comparable to those of GH9/CBM3c of the robust CelA expressed in Escherichia coli. Appending one or two cellulose-binding CBM3bs enhanced the activities of CbXyn10C in degrading crystalline celluloses, which were again comparable to those of the GH9/CBM3c-CBM3b-CBM3b truncation mutant of CelA. Since CbXyn10C/Cel48B and CelA have similar domain organizations and high sequence homology, the endocellulase activity observed in CbXyn10C leads us to speculate that CbXyn10C/Cel48B may use the same strategy that CelA uses to hydrolyze crystalline cellulose, thus helping the excellent crystalline cellulose degrader C. bescii acquire energy from the environment. In addition, we also demonstrate that CbXyn10C may be an interesting candidate enzyme for biotechnology due to its versatility in hydrolyzing multiple substrates with different glycosidic linkages.  相似文献   

14.
Plant biomass holds a promise for the production of second-generation ethanol via enzymatic hydrolysis, but its utilization as a biofuel resource is currently limited to a large extent by the cost and low efficiency of the cellulolytic enzymes. Considerable efforts have been dedicated to elucidate the mechanisms of the enzymatic process. It is well known that most cellulases possess a catalytic core domain and a carbohydrate binding module (CBM), without which the enzymatic activity can be drastically reduced. However, Cel12A members of the glycosyl hydrolases family 12 (GHF12) do not bear a CBM and yet are able to hydrolyze amorphous cellulose quite efficiently. Here, we use X-ray crystallography and molecular dynamics simulations to unravel the molecular basis underlying the catalytic capability of endoglucanase 3 from Trichoderma harzianum (ThEG3), a member of the GHF12 enzymes that lacks a CBM. A comparative analysis with the Cellulomonas fimi CBM identifies important residues mediating interactions of EG3s with amorphous regions of the cellulose. For instance, three aromatic residues constitute a harboring wall of hydrophobic contacts with the substrate in both ThEG3 and CfCBM structures. Moreover, residues at the entrance of the active site cleft of ThEG3 are identified, which might hydrogen bond to the substrate. We advocate that the ThEG3 residues Asn152 and Glu201 interact with the substrate similarly to the corresponding CfCBM residues Asn81 and Arg75. Altogether, these results show that CBM motifs are incorporated within the ThEG3 catalytic domain and suggest that the enzymatic efficiency is associated with the length and position of the substrate chain, being higher when the substrate interact with the aromatic residues at the entrance of the cleft and the catalytic triad. Our results provide guidelines for rational protein engineering aiming to improve interactions of GHF12 enzymes with cellulosic substrates.  相似文献   

15.
The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.  相似文献   

16.
Liu Y  Zhang J  Liu Q  Zhang C  Ma Q 《Current microbiology》2004,49(4):234-238
A thermophilic bacterial strain GXN151 which could degrade Avicel efficiently was isolated and identified as Bacillus licheniformis. A genomic library of GXN151 was constructed and two novel endoglucanase genes designated cel9A and cel12A were isolated by screening the library on carboxylmethyl cellulase indicator plates. The analysis of amino acid sequences deduced from the genes indicated that Cel9A consisted of a catalytic domain belonging to glycosyl hydrolase family 9, a linker domain, and a carbohydrate binding module family 3 from N-terminal to C-terminal; Cel12A had only one catalytic domain belonging to glycosyl hydrolase family 12. The combinations of Cel9A and Cel12A produced by the recombinant E. coli exhibited synergistic action against substrates of carboxylmethyl cellulose as well as Avicel.  相似文献   

17.
Clostridium thermocellum cellulase 9I (Cel9I) is a non-cellulosomal tri-modular enzyme, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b). The presence of CBM3c was previously shown to be essential for activity, however the mechanism by which it functions is unclear. We expressed the three recombinant modules independently in Escherichia coli and examined their interactions. Non-denaturing gel electrophoresis, isothermal titration calorimetry, and affinity purification of the GH9-CBM3c complex revealed a specific non-covalent binding interaction between the GH9 module and CBM3c. Their physical association was shown to recover 60-70% of the intact Cel9I endoglucanase activity.

Structured summary:

MINT-6946626:Cel9I (uniprotkb:Q02934) and Cel9I (uniprotkb:Q02934) bind (MI:0407) by comigration in non-denaturing gel electrophoresis (MI:0404)MINT-6946649:Cel9I (uniprotkb:Q02934) and Cel9I (uniprotkb:Q02934) bind (MI:0407) by molecular sieving (MI:0071)MINT-6946687:Cel9I (uniprotkb:Q02934) and Cel9I (uniprotkb:Q02934) bind (MI:0407) by isothermal titration calorimetry (MI:0065)MINT-6946706:Cel9I (uniprotkb:Q02934) binds (MI:0407) to Cel9I (uniprotkb:Q02934) by pull down (MI:0096)  相似文献   

18.
Paenibacillus polymyxa GS01 secretes Cel44C-Man26A as a multifunctional enzyme with cellulase, xylanase, lichenase, and mannanase activities. Cel44C-Man26A consists of 1,352 amino acids in which present a catalytic domain (CD) of the glycosyl hydrolase family 44 (GH44), fibronectin domain type 3 (Fn3), catalytic domain of glycosyl hydrolase family 26 (GH26), and a cellulose-binding module type 3 (CBM3). A truncated Cel44C-Man26A protein, consisting of 549 amino acid residues, reacted as a multifunctional mature enzyme despite the absence of the 10 amino acids containing GH44, Fn3, GH26, and CBM3. However, the multifunctional activity was not found in the mature Cel44C-Man26A protein truncated to less than 548 amino acids. The truncated Cel44C-Man26A proteins showed the optimum pH for the lichenase activity was pH 7.0, pH 6.0 for the xylanase and mannanase, and pH 5.0 for the cellulase. The truncated Cel44C-Man26A proteins exhibited enzymatic activity 40–120% higher than the full-length Cel44C.  相似文献   

19.
The Cel5 cellulase (formerly known as endoglucanase Z) from Erwinia chrysanthemi is a multidomain enzyme consisting of a catalytic domain, a linker region, and a cellulose binding domain (CBD). A three-dimensional structure of the CBD(Cel5) has previously been obtained by nuclear magnetic resonance. In order to define the role of individual residues in cellulose binding, site-directed mutagenesis was performed. The role of three aromatic residues (Trp18, Trp43, and Tyr44) in cellulose binding was demonstrated. The exposed potential hydrogen bond donors, residues Gln22 and Glu27, appeared not to play a role in cellulose binding, whereas residue Asp17 was found to be important for the stability of Cel5. A deletion mutant lacking the residues Asp17 to Pro23 bound only weakly to cellulose. The sequence of CBD(Cel5) exhibits homology to a series of five repeating domains of a putative large protein, referred to as Yheb, from Escherichia coli. One of the repeating domains (Yheb1), consisting of 67 amino acids, was cloned from the E. coli chromosome and purified by metal chelating chromatography. While CBD(Cel5) bound to both cellulose and chitin, Yheb1 bound well to chitin, but only very poorly to cellulose. The Yheb protein contains a region that exhibits sequence homology with the catalytic domain of a chitinase, which is consistent with the hypothesis that the Yheb protein is a chitinase.  相似文献   

20.
The modular endoglucanase Cel9B from Paenibacillus barcinonensis is a highly efficient biocatalyst, which expedites pulp refining and reduces the associated energy costs as a result. In this work, we set out to identify the specific structural domain or domains responsible for the action of this enzyme on cellulose fibre surfaces with a view to facilitating the development of new cellulases for optimum biorefining. Using the recombinant enzymes GH9–CBD3c, Fn3–CBD3b, and CBD3b, which are truncated forms of Cel9B, allowed us to assess the individual effects of the catalytic, cellulose binding, and fibronectin‐like domains of the enzyme on the refining of TCF kraft pulp from Eucalyptus globulus. Based on the physico‐mechanical properties obtained, the truncated form containing the catalytic domain (GH9–CBD3c) has a strong effect on fibre morphology. Comparing its effect with that of the whole cellulase (Cel9B) revealed that the truncated enzyme contributes to increasing paper strength through improved tensile strength and burst strength and also that the truncated form is more effective than the whole enzyme in improving tear resistance. Therefore, the catalytic domain of Cel9B has biorefining action on pulp. Although cellulose binding domains (CBDs) are less efficient toward pulp refining, evidence obtained in this work suggests that CBD3b alters fibre surfaces and influences paper properties as a result. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号