首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.  相似文献   

3.
Morphological and biochemical studies on low density lipoprotein (LDL) receptor metabolism were performed in squamous carcinoma cells (SCC-15 and SCC-12F2). Modulation of terminal differentiation was achieved by culturing these cells at different cell densities. Studies on these cells cultured at low density (hardly any terminal differentiation) showed the following results: High affinity binding of LDL was excessive; LDL binding to SCC-15 cells was twice as high as that in SCC-12F2 cells and in fibroblasts. The distribution of the LDL binding visualized by LDL receptor antibodies was non-linear. There was no contact inhibition of LDL binding. LDL-gold particles were mainly bound to the plasma membrane outside coated pits. LDL-gold particles were internalized and delivered to dense bodies (= lysosomes). Degradation of LDL took place after a lag period of 10 min. Dissociation of LDL from the plasma membrane was substantial (more than 40% after a 120 min chase period). The same experiments on the cells cultured at high density (terminal differentiation present) showed several differences: A sharp decrease in high affinity LDL binding in both cell types. The internalization of surface bound LDL was defective in most of the squamous carcinoma cells. Dissociation of LDL from the plasma membrane was substantial, and after a chase period of 120 min at 37 degrees C still more than 20% of LDL remained intracellular and was not degraded. We postulate that LDL receptor-mediated endocytosis and degradation take place in squamous carcinoma cells but that during the process of terminal differentiation modulation of LDL-receptor metabolism occurs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The very low density lipoprotein receptor is a member of the low density lipoprotein receptor supergene family for which two isoforms have been reported, one lacking and the other containing an O-linked sugar domain. In order to gain insight into their functionality, transient and stable transformants separately overexpressing previously cloned bovine variants were analyzed. We report evidence that the variant lacking the O-linked sugar domain presented a rapid cleavage from the cell and that a large amino-terminal very low density lipoprotein receptor fragment was released into the culture medium. As only minor proteolysis was involved in the other very low density lipoprotein receptor variant, the clustered O-linked sugar domain may be responsible for blocking the access to the protease-sensitive site(s). To test this hypothesis, a mutant Chinese hamster ovary cell line, ldlD, with a reversible defect in the protein O-glycosylation, was used. The instability of the O-linked sugar-deficient very low density lipoprotein receptor on the cell surface was comparable to that induced by the proteolysis of the variant lacking the O-linked sugar domain. Moreover, our data suggest that the O-linked sugar domain may also protect the very low density lipoprotein receptor against unspecific proteolysis. Taken together, these results indicate that the presence of the O-linked sugar domain may be required for the stable expression of the very low density lipoprotein receptor on the cell surface and its absence may be required for release of the receptor to the extracellular space. The exclusive expression of the variant lacking the O-linked sugar domain in the bovine aortic endothelium opens new perspectives in the physiological significance of the very low density lipoprotein receptor.  相似文献   

5.
Cholesteryl esters present in nascent very low density lipoproteins are generated in a reaction catalyzed by acyl CoA:cholesterol acyltransferase (ACAT). To examine the effect of cholesteryl esters on the secretion of apoB-containing lipoproteins, we transiently overexpressed human (h) ACAT-1 in the livers of low density lipoprotein (LDL) receptor(-/-) mice using adenovirus-mediated gene transfer. Overexpression of hACAT-1 increased hepatic total and esterified cholesterol but did not reduce hepatic free cholesterol due to a compensatory increase in the rate of de novo cholesterol synthesis. Overexpression of hACAT-1 markedly increased the plasma concentration and hepatic secretion of apoB-containing lipoproteins but had no effect on the clearance of very low density lipoprotein-apoB from plasma indicating that cholesteryl esters play an important role in regulating the assembly and secretion of apoB-containing lipoproteins. ACAT activity has been implicated in the regulation of the LDL receptor pathway by dietary fatty acids. It has been hypothesized that unsaturated fatty acids, by enhancing ACAT activity, reduce the amount of free cholesterol in a putative regulatory pool that feeds back on LDL receptor expression. We directly tested this hypothesis in hamsters by transiently overexpressing hACAT-1 in the liver. Enhanced cholesterol esterification in the liver resulted in a compensatory increase in de novo cholesterol synthesis but no induction of LDL receptor expression suggesting that fatty acids regulate LDL receptor expression via a mechanism independent of ACAT.  相似文献   

6.
7.
THP-1 cells, a human cell line established from acute monocytic leukemia cells, degraded native human low density lipoprotein (LDL) through a LDL-specific pathway, but had no ability to degrade acetylated LDL. When the cells were treated with 12-o-tetradecanoyl-phorbol-13-acetate (TPA) to differentiate into the macrophage-like stage, those acquired the ability to degrade acetylated LDL through its specific pathway and lost the ability to degrade native LDL. Degradation of acetylated LDL by the differentiated cells was not reduced by preincubation with either acetylated LDL or native LDL.  相似文献   

8.
Glycogen synthase kinase 3β (GSK3β) is increased by high glucose in mesangial cells. Thus, we studied the role of GSK3β in advanced glycation end-product (AGE)-induced effects in the proximal tubule-like LLC-PK1 cells. We found that AGE (100 μg/ml) time-dependently (8-48 h) increased phospho-GSK3β-Tyr216 (active GSK3β) and time-dependently (4-24 h) decreased phospho-GSK3β-Ser21/9 (inactive GSK3β) protein expression. Meanwhile, AGE (100 μg/ml) activated GSK3β kinase at 8-48 h. AGE (100 μg/ml) dose-dependently (75-100 μg/ml) decreased β-catenin protein expression but AGE did not decrease β-catenin protein expression until 48 h. SB216763 (a GSK3β inhibitor) and GSK3β shRNA attenuated AGE (100 μg/ml)-inhibited cell proliferation and protein expression of β-catenin and cyclin D1 at 48 h. SB216763 also attenuated AGE-induced type IV collagen. We conclude that AGE activates GSK3β in LLC-PK1 cells. AGE-inhibited β-catenin and cyclin D1 protein expression are dependent on GSK3β. Moreover, AGE-inhibited cell proliferation and AGE-induced type IV collagen protein expression are dependent on GSK3β.  相似文献   

9.
10.
11.
12.
Over the past decade, the exact function of p120-catenin in regulation of E-cadherin/catenins complex has remained particularly controversial. We have previously reported that E-cadherin-mediated adhesion is tightly regulated by tyrosine phosphorylation of catenins. However, this effect is not observed in human colon carcinoma cell line Caco-2. Here, we have generated inducible Caco-2 clones that display p120Cas1B, a p120-catenin isoform poorly expressed by these cells. As a result, neither expression of the transgene nor tyrosine phosphorylation of catenins induces redistribution of E-cadherin to the cytosol and disassembly of adherens and tight junctions. In contrast, E-cadherin appears markedly increased reinforcing cell-cell adhesion. Interestingly, a substantial decrease in p120-catenin levels is found in MDCK cells expressing Snail, in which E-cadherin expression is strongly inhibited. Additionally, we show that the specific depletion of p120-catenin decreases cell-cell contacts, and increases cell motility and scattering of colonies established by HT-29 M6 cells. Together our results corroborate that p120-catenin plays an essential role in the maintenance of the required E-cadherin protein levels that prevent the loss of epithelial characteristics occurred during tumorigenesis.  相似文献   

13.
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.  相似文献   

14.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

15.
The relative roles of angiotensin II (Ang II) type 1 receptor (AT(1)R) and Ang II type 2 receptor (AT(2)R) in immune-mediated nephritis are unknown, and the effect of the blockade of AT(1)R and its indirect counter-activation of AT(2)R relative to the anti-fibrotic action in this disease is unclear. To address this question, we studied the role of AT(1)R and AT(2)R in anti-glomerular basement membrane nephritis in SJL mice. Groups of mice were treated with either an AT(1)R antagonist (CGP-48933; CGP group), an AT(2)R antagonist (PD-123319; PD group), both (CGP/PD group), or a vehicle (PCt group) from Day 29 to 56. At Day 56 post-treatment, fibrosis-related parameters such as interstitial matrix deposition, and the expression of genes of TGF-beta1, plasminogen activator inhibitor-1, and type I collagen were significantly reduced in the kidney in the CGP group. There were no significant effects on these parameters in the PD group. However, this anti-fibrotic action by CGP-48933 was totally abolished by co-treatment with PD-123319 in the CGP/PD group. The gene expression of renin was significantly increased in the kidneys in the CGP and CGP/PD groups, suggesting that CGP-48933 had increased Ang II generation in those groups. In conclusion, counter-activation of AT(2)R by increased Ang II under AT(1)R blockade likely conferred an anti-fibrotic protection in this model.  相似文献   

16.
17.
18.
The generation of functional transgenes via microinjection of overlapping DNA fragments has previously been reported to be successful, but it is still not a widely applied approach. Here we show that the method is very reliable, and should be considered, in case a single large insert clone of the desired gene is not available. In the present study, two large DNA fragments consisting of overlapping cosmids, together constituting the human very low density lipoprotein receptor (VLDLR) gene (35kb), were used to generate VLDLR transgenic (VLDLR-Tg) mice. Three transgenic founders were born, of which two (strain #2 and #3) generated transgenic offspring. Using Fiber-FISH analysis, the integration site was shown to contain at least 44 and 64 DNA fragments in mouse strains #2 and #3, respectively. This copy number resulted in integration sites of 1.5 and 2.5 megabase in size. Notably, over 90% of the fragments in both mouse strains #2 and #3 were flanked by their complementary fragment. In line with this observation, Southern blot analysis demonstrated that the correct recombination between fragments predominated in the transgenic insertion. Human VLDLR expression was detected in testis, kidney and brain of both mouse strains. Since this pattern did not parallel the endogenous VLDLR expression, some crucial regulatory elements were probably not present in the cosmid clones. Human VLDLR expression in testis was detected in germ cells up to the meiotic stage by in situ mRNA analysis. Remarkably, in the F1 generation of both VLDLR-Tg mouse strains the testis was atrophic and giant cells were detected in the semineferous tubuli. Furthermore, male VLDLR-Tg mice transmitted the transgene to their progeny with low frequencies. This could imply that VLDLR overexpression in the germ cells disturbed spermatogenesis.  相似文献   

19.
20.
Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号