首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
A shuttle vector pHSG396Sp was constructed to perform gene expression using Sphingomonas subterranea as a host. A new lasso peptide biosynthetic gene cluster, derived from Brevundimonas diminuta, was amplified by PCR and integrated to afford a expression vector pHSG396Sp-12697L. The new lasso peptide brevunsin was successfully produced by S. subterranea, harboring the expression vector, with a high production yield (10.2 mg from 1 L culture). The chemical structure of brevunsin was established by NMR and MS/MS experiments. Based on the information obtained from the NOE experiment, the three-dimensional structure of brevunsin was determined, which indicated that brevunsin possessed a typical lasso structure. This expression vector system provides a new heterologous production method for unexplored lasso peptides that are encoded by bacterial genomes.  相似文献   

2.
Lasso peptide isopeptidase is an enzyme that specifically hydrolyzes the isopeptide bond of lasso peptides, rendering these peptides linear. To carry out a detailed structure-activity analysis of the lasso peptide isopeptidase AtxE2 from Asticcacaulis excentricus, we solved NMR structures of its substrates astexin-2 and astexin-3. Using in vitro enzyme assays, we show that the C-terminal tail portion of these peptides is dispensable with regards to isopeptidase activity. A collection of astexin-2 and astexin-3 variants with alanine substitutions at each position within the ring and the loop was constructed, and we showed that all of these peptides except for one were cleaved by the isopeptidase. Thus, much like the lasso peptide biosynthetic enzymes, lasso peptide isopeptidase has broad substrate specificity. Quantitative analysis of the cleavage reactions indicated that alanine substitutions in loop positions of these peptides led to reduced cleavage, suggesting that the loop is serving as a recognition element for the isopeptidase.  相似文献   

3.
Genome mining has unlocked a veritable treasure chest of natural compounds. However, each family of natural products requires a genome-mining approach tailored to its unique features to be successful. Lasso peptides are ribosomally synthesized and posttranslationally modified products with a unique three-dimensional structure. Advances in the understanding of these molecules have informed the design of strategies to identify new members of the class in sequenced genomes. This review presents the bioinformatic methods used to discover novel lasso peptides and describes how such analyses have afforded insights into the biosynthesis and evolution of this peptide class.  相似文献   

4.
Bax inhibitor-1 (BI-1) is a multitransmembrane domain-spanning endoplasmic reticulum (ER)-located protein that is evolutionarily conserved and protects against apoptosis and ER stress. Furthermore, BI-1 is proposed to modulate ER Ca(2+) homeostasis by acting as a Ca(2+)-leak channel. Based on experimental determination of the BI-1 topology, we propose that its C terminus forms a Ca(2+) pore responsible for its Ca(2+)-leak properties. We utilized a set of C-terminal peptides to screen for Ca(2+) leak activity in unidirectional (45)Ca(2+)-flux experiments and identified an α-helical 20-amino acid peptide causing Ca(2+) leak from the ER. The Ca(2+) leak was independent of endogenous ER Ca(2+)-release channels or other Ca(2+)-leak mechanisms, namely translocons and presenilins. The Ca(2+)-permeating property of the peptide was confirmed in lipid-bilayer experiments. Using mutant peptides, we identified critical residues responsible for the Ca(2+)-leak properties of this BI-1 peptide, including a series of critical negatively charged aspartate residues. Using peptides corresponding to the equivalent BI-1 domain from various organisms, we found that the Ca(2+)-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca(2+)-channel pore in full-length BI-1, we found that Asp-213 was essential for BI-1-dependent ER Ca(2+) leak. Thus, we elucidated residues critically important for BI-1-mediated Ca(2+) leak and its potential channel pore. Remarkably, one of these residues was not conserved among plant and yeast BI-1 orthologs, indicating that the ER Ca(2+)-leak properties of BI-1 are an added function during evolution.  相似文献   

5.
Microcin J25 (MccJ25) is a plasmid-encoded, ribosomally synthesized antibacterial peptide with a unique lasso structure. The lasso structure, produced with the aid of two processing enzymes, provides exceptional stability to MccJ25. We report the synthesis of six peptides (1-6), derived from the MccJ25 sequence, that are designed to form folded conformation by disulfide bond formation and electrostatic or hydrophobic interactions. Two peptides (1 and 6) display good activity against Salmonella newport, and are the first synthetic derivatives of MccJ25 that are bactericidal. Peptide 1 displays potent activity against several Salmonella strains including two MccJ25 resistant strains. The solution conformation and the stability studies of the active peptides suggest that they do not fold into a lasso conformation and peptide 1 displays antimicrobial activity by inhibition of target cell respiration. Like MccJ25, the synthetic MccJ25 derivatives display minimal toxicity to mammalian cells suggesting that these peptides act specifically on bacterial cells.  相似文献   

6.
Bax inhibitor-1 (BI-1) is a cell death suppressor protein conserved across a variety of organisms. The Arabidopsis atbi1-1 plant is a mutant in which the C-terminal 6 amino acids of the expressed BI-1 protein have been replaced by T-DNA insertion. This mutant BI-1 protein (AtBI-CM) produced in Escherichia coli can no longer bind to calmodulin. A promoter-reporter assay demonstrated compartmentalized expression of BI-1 during hypersensitive response, introduced by the inoculation of Pseudomonas syringae possessing the avrRTP2 gene, Pst(avrRPT2). In addition, both BI-1 knockdown plants and atbi1-1 showed increased sensitivity to Pst(avrRPT2)-induced cell death. The results indicated that the loss of calmodulin binding reduces the cell death suppressor activity of BI-1 in planta.Bax inhibitor-1 (At5g47120, BI-1)2 is a highly conserved cell death suppressor protein that resides in the endoplasmic reticulum (ER) membranes of a range of organisms. BI-1 is important in the response of organisms to abiotic and biotic stresses. Down-regulation of BI-1 in tobacco suspension cells (BY2) induced sensitivity against starvation (1), whereas overexpression in barley induced the breakdown of mlo-mediated penetration resistance to the fungal pathogen, powdery mildew (Blumeria graminis) (2). Cultured rice cells overexpressing Arabidopsis BI-1 (AtBI-1) showed increased resistance to Magnaporthe grisea-induced hypersensitive response (HR)-like cell death, potentially confirming the role of BI-1 in HR regulation (3). Recent studies on animal and plant BI-1 indicated a close relationship with ER stress response (46). BI-1-deficient mice are hypersensitive to apoptosis induced by ER stress agents such as thapsigargin, tunicamycin, and brefeldin A (4). Such events correlate with decreased calcium release from the ER, and our previous study demonstrated an association of BI-1 with calcium signaling in stress-treated plant cells (7). However, the molecular mechanism by which BI-1 suppresses cell death is still unclear.Recently, Watanabe et al. (5, 8) demonstrated that an Arabidopsis T-DNA-tagged mutant, atbi1-1, was more susceptible to fungal toxin-, heat-shock-, and tunicamycin-induced cell death. The atbi1-1 plant has T-DNA inserted into the AtBI-1 protein C-terminal region, which contains potential coiled-coil structures and is essential for inhibiting both Bax-induced lethality in yeast and oxidative stress-induced cell death in plant cells as we had demonstrated earlier (9). We also found that the C-terminal 14 amino acids of AtBI-1 were capable of binding to the calmodulin molecule, a mediator of calcium signaling (7). Here, the present study directly proved the functional interaction between the highly conserved calmodulin molecule and BI-1 using a genomic mutation of the AtBI-1 gene. Such a genomic mutant showed accelerated sensitivity against Pseudomonas-induced HR cell death. The results indicated that the C-terminal-less BI-1 protein, which lost the CaM binding, was associated with reduced cell death suppression activity in vivo.  相似文献   

7.
Based on genome mining, a new lasso peptide specialicin was isolated from the extract of Streptomyces specialis. The structure of specialicin was established by ESI-MS and NMR analyses to be a lasso peptide with the length of 21 amino acids, containing an isopeptide bond and two disulfide bonds in the molecule. The stereochemistries of the constituent amino acids except for Trp were determined to be L and the stereochemistry of Trp at C-terminus was determined to be D. Three dimensional structure of specialicin was determined based on NOE experimental data, which indicated that specialicin possessed the similar conformational structure with siamycin I. Specialicin showed the antibacterial activity against Micrococcus luteus and the moderate anti-HIV activity against HIV-1 NL4-3. The biosynthetic gene cluster of specialicin was proposed from the genome sequence data of S. specialis.  相似文献   

8.
Gram-negative bacilli such as Pseudomonas spp., Pseudoalteromonas sp., Angiococcus sp., Archangium sp., Burkholderia spp., Chromobacterium sp., Chondromyces sp., Cystobacter sp., Jahnella sp., Janthinobacterium sp., Lysobacter spp., Paraliomyxa sp., Photobacterium spp., Photorhabdus sp., Pontibacter sp., Ruegeria sp., Serratia sp., Sorangium sp., Sphingomonas sp., and Xenorhabdus spp. produce an enormous array of short peptides of 30 residues or fewer that are potential pharmaceutical drugs and/or biocontrol agents. The need for novel lead antibiotic compounds is urgent due to increasing drug resistance, and this review summarises 150 Gram-negative bacilli-derived compounds reported since 2000, including 40 cyclic lipopeptides from Pseudomonas spp.; nine aromatic peptides; eight glycopeptides; 45 different cyclic lipopeptides; 24 linear lipopeptides; eight thiopeptides; one lasso peptide; ten typical cyclic peptides; and five standard linear peptides. The current and potential therapeutic applications of these peptides, including structures and antituberculotic, anti-cyanobacterial, antifungal, antibacterial, antiviral, insecticidal, and antiprotozoal activities are discussed.  相似文献   

9.
Bax inhibitor 1 (BI-1), a transmembrane protein with Ca2+ channel-like activity, has antiapoptotic and anticancer activities. Cells overexpressing BI-1 demonstrated increased cell adhesion. Using a proteomics tool, we found that BI-1 interacted with γ-actin via leucines 221 and 225 and could control actin polymerization and cell adhesion. Among BI-1−/− cells and cells transfected with BI-1 small interfering RNA (siRNA), levels of actin polymerization and cell adhesion were lower than those among BI-1+/+ cells and cells transfected with nonspecific siRNA. BI-1 acts as a leaky Ca2+ channel, but mutations of the actin binding sites (L221A, L225A, and L221A/L225A) did not change intra-endoplasmic reticulum Ca2+, although deleting the C-terminal motif (EKDKKKEKK) did. However, store-operated Ca2+ entry (SOCE) is activated in cells expressing BI-1 but not in cells expressing actin binding site mutants, even those with the intact C-terminal motif. Consistently, actin polymerization and cell adhesion were inhibited among all the mutant cells. Compared to BI-1+/+ cells, BI-1−/− cells inhibited SOCE, actin polymerization, and cell adhesion. Endogenous BI-1 knockdown cells showed a similar pattern. The C-terminal peptide of BI-1 (LMMLILAMNRKDKKKEKK) polymerized actin even after the deletion of four or six charged C-terminal residues. This indicates that the actin binding site containing L221 to D231 of BI-1 is responsible for actin interaction and that the C-terminal motif has only a supporting role. The intact C-terminal peptide also bundled actin and increased cell adhesion. The results of experiments with whole recombinant BI-1 reconstituted in membranes also coincide well with the results obtained with peptides. In summary, BI-1 increased actin polymerization and cell adhesion through Ca2+ regulation and actin interaction.In metastasis, tumor cells migrate from primary tumor sites into the lymphatic or circulatory system and then attach to the basal matrix of the target tissue (16). Cell adhesion and migration contribute to the metastatic process. Adhesion assembly and turnover are highly dynamic, coordinated processes essential for cell migration (16, 26). Adhesions serve as traction points for cell translocation and mediate a network of signaling events that regulate protrusion, contractility, and attachment (16, 29, 30). In migrating cells, protrusions are generated by actin polymerization at the front of the cell (22). Actin exists as monomers (G-actin) and polymers (F-actin), which transform into each other, and the transformation has a major contribution to cell physiology and dynamics. In the cell under physiological conditions, both G- and F-actin contain Mg2+ at the high-affinity binding site. The actin dynamic state contributes to cancer metastasis environments, including that of increased cell adhesion.The antiapoptotic protein Bax inhibitor 1 (BI-1) was identified through a functional yeast screen designed to select for human cDNAs that inhibit Bax-induced apoptosis (39). BI-1 regulates Ca2+ levels in the endoplasmic reticulum (ER) and cytosol (19) via a C-terminal amino acid sequence of EKDKKKEKK. The antiapoptotic function of BI-1 contributes to the development of cancer and resistance to antitumor therapies (12, 14, 17), but the roles of BI-1 in regulating cell adhesion and actin polymerization are unclear. This study examines the role of BI-1 in cell adhesion through Ca2+ regulation and actin polymerization.  相似文献   

10.
Antimicrobial peptides are produced by prokaryotes and eukaryotes with fundamental role of protection against pathogenic microbes. Staphylococcus aureus, a major virulent pathogen in humans, shows multiple drug resistance and is affected by the bacteriocin activity of Mutacin IV. Currently, peptide therapeutics has been reported as a potential alternative for treating microbial infections specially exhibiting multiple drug resistance. However, the mechanism of action and interaction of peptides with target proteins is not known. The current work is an attempt to address the above issue by performing molecular docking and randomization experiments. In this study, antimicrobial peptides of bacterial origin (168 peptides) were collected from APD2 database and their net charge and hydrophobicity values were retrieved. Mutacin IV (APD Id—AP01174), a 44 amino acids long peptide derived from Streptococcus mutans UA140, was selected on the basis of high hydrophobicity to net charge ratio (0.52) and used for in silico docking studies with therapeutically important surface proteins viz. IsdA, IsdB, ClfB, and SasG of S. aureus using ZDOCK server. The docking result of IsdB surface protein and Mutacin IV was found better (ZDOCK score 1168.582) as compared to others. Afterwards, the native Mutacin IV sequence was randomized to generate 50 new combinations using EMBOSS (Shuffleseq) tool. The new sequence of Mutacin IV was screened on the basis of high in vivo to in vitro aggregation ratio (i.e. high in vivo aggregation and low in vitro aggregation values) and good binding energies against IsdB surface protein of S. aureus from the randomized sequences. The new peptide sequence showed an in vivo to in vitro aggregation ratio of 2.206 and 0.888, respectively which is higher than native sequence of Mutacin IV ratio (0.205). Moreover, the ZDOCK scores were found to be 1370.529 and 1687.048 which were better than the native sequence of Mutacin IV (ZDOCK score 1168.582). This research work identifies the new sequence of Mutacin IV peptide which binds effectively to the surface proteins of S. aureus and thereby could be a better peptide than native Mutacin IV. Our finding also demonstrates enhanced interactions of new Mutacin IV peptide with IsdB surface protein to understand the structural implications and proposes its effective antimicrobial role against S. aureus.  相似文献   

11.
In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications.  相似文献   

12.
13.
A number of research have proven that antimicrobial peptides are of greatest potential as a new class of antibiotics. Antimicrobial peptides and cell-penetrating peptides share some similar structure characteristics. In our study, a new peptide analog, APP (GLARALTRLLRQLTRQLTRA) from the cell-penetrating peptide ppTG20 (GLFRALLRLLRSLWRLLLRA), was identified simultaneously with the antibacterial mechanism of APP against Salmonella typhimurium and Streptococcus pyogenes. APP displayed potent antibacterial activity against Gram-negative and Gram-positive strains. The minimum inhibitory concentration was in the range of 2 to 4 μM. APP displayed higher cell selectivity (about 42-fold increase) as compared to the parent peptide for it decreased hemolytic activity and increased antimicrobial activity. The calcein leakage from egg yolk l-α-phosphatidylcholine (EYPC)/egg yolk l-α-phosphatidyl-dl-glycerol and EYPC/cholesterol vesicles demonstrated that APP exhibited high selectivity. The antibacterial mechanism analysis indicated that APP induced membrane permeabilization in a kinetic manner for membrane lesions allowing O-nitrophenyl-β-d-galactoside uptake into cells and potassium release from APP-treated cells. Flow cytometry analysis demonstrated that APP induced bacterial live cell membrane damage. Circular dichroism, fluorescence spectra, and gel retardation analysis confirmed that APP interacted with DNA and intercalated into the DNA base pairs after penetrating the cell membrane. Cell cycle assay showed that APP affected DNA synthesis in the cell. Our results suggested that peptides derived from the cell-penetrating peptide have the potential for antimicrobial agent development, and APP exerts its antibacterial activity by damaging bacterial cell membranes and binding to bacterial DNA to inhibit cellular functions, ultimately leading to cell death.  相似文献   

14.
Bax Inhibitor-1 (BI-1) is an evolutionarily conserved six-transmembrane domain endoplasmic reticulum (ER)-localized protein that protects against ER stress-induced apoptotic cell death. This function is closely connected to its ability to lower steady-state ER Ca2+ levels. Recently, we elucidated BI-1's Ca2+-channel pore in the C-terminal part of the protein and identified the critical amino acids of its pore. Based on these insights, a Ca2+-channel pore-dead mutant BI-1 (BI-1D213R) was developed. We determined whether BI-1 behaves as a bona fide H+/Ca2+ antiporter or as an ER Ca2+-leak channel by investigating the effect of pH on unidirectional Ca2+-efflux rates. At pH 6.8, wild-type BI-1 expression in BI-1−/− cells increased the ER Ca2+-leak rate, correlating with its localization in the ER compartment. In contrast, BI-1D231R expression in BI-1−/−, despite its ER localization, did not increase the ER Ca2+-leak rate. However, at pH < 6.8, the BI-1-mediated ER Ca2+ leak was blocked. Finally, a peptide representing the Ca2+-channel pore of BI-1 promoting Ca2+ flux from the ER was used. Lowering the pH from 6.8 to 6.0 completely abolished the ability of the BI-1 peptide to mediate Ca2+ flux from the ER. We propose that this pH dependence is due to two aspartic acid residues critical for the function of the Ca2+-channel pore and located in the ER membrane-dipping domain, which facilitates the protonation of these residues.  相似文献   

15.
Peptide natural products show broad biological properties and are commonly produced by orthogonal ribosomal and nonribosomal pathways in prokaryotes and eukaryotes. To harvest this large and diverse resource of bioactive molecules, we introduce here natural product peptidogenomics (NPP), a new MS-guided genome-mining method that connects the chemotypes of peptide natural products to their biosynthetic gene clusters by iteratively matching de novo tandem MS (MS(n)) structures to genomics-based structures following biosynthetic logic. In this study, we show that NPP enabled the rapid characterization of over ten chemically diverse ribosomal and nonribosomal peptide natural products of previously unidentified composition from Streptomycete bacteria as a proof of concept to begin automating the genome-mining process. We show the identification of lantipeptides, lasso peptides, linardins, formylated peptides and lipopeptides, many of which are from well-characterized model Streptomycetes, highlighting the power of NPP in the discovery of new peptide natural products from even intensely studied organisms.  相似文献   

16.
Earlier, in the wheat Triticum kiharae Dorof. et Migusch., a new family of genes coding for the hevein-like antimicrobial peptides WAMPs, involved in the protection of wheat plants against pathogens, was discovered. In the present study, we examined the wamp homologs in plants belonging to ten di-, tetra-, and hexaploid species of the genus Aegilops L., among which there are donors of polyploid wheat genomes, as well as of the resistance genes to the most important wheat pathogens. Using PCR amplification with genomic DNA as a template and primers specific to the sequences of the wheat wamp genes, for the first time, nucleotide sequences of the protein-coding regions of wamp homologs were determined in the species of the genus Aegilops L. The wamp homologs were found in all species studied. It was demonstrated that the WAMP peptide precursors encoded by them differed in single nucleotide substitutions, as well as deletions/insertions of amino acid sequences. The most conserved region of the precursor is the mature peptide region, where, in addition to the variable position 34, deletions of amino acid sequences were found in a number of peptides. To elucidate the role of deletions in the antimicrobial activity of WAMPs, a recombinant WAMP-3 peptide with a deletion in the N-terminal region was produced by expression in E. coli cells, and it was shown that antimicrobial activity of the peptide was preserved. It was demonstrated that all the discovered wamp genes were expressed in seedlings of the studied Aegilops species. The results shed new light on the structural diversity of genes encoding the hevein-like antimicrobial peptides WAMPs.  相似文献   

17.
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum (ER)-based cell death suppressor widely conserved in plants and animals (Xu and Reed, 1998; Kawai et al., 1999). In plants, BI-1 is considered a stress-associated factor, since its expression is stimulated by various stresses (Sanchez et al., 2000; Kawai-Yamada et al., 2001; Matsumura et al., 2003; Watanabe and Lam, 2006; Isbat et al., 2009). Although plants lack the homolog of animal BAX as an inducer of programmed cell death, loss of BI-1 expression results in a severe cell death phenotype under stress conditions, such as fumonisin B1-induced ER stress and disturbance of ion homeostasis (Watanabe and Lam, 2006; Ihara-Ohori et al., 2007). Conversely, plants overexpressing BI-1 exhibit tolerance to cell death induced by various stresses (Kawai-Yamada et al., 2001, 2004; Matsumura et al., 2003; Ihara-Ohori et al., 2007; Watanabe and Lam, 2008; Ishikawa et al., 2010). Moreover, BI-1 overexpression confers not only tolerance to oxidative stress-mediated cell death but also enhanced metabolic acclimation involved in energy and redox balance (Ishikawa et al., 2010). The results of these studies indicate that plant BI-1 is potentially useful for engineering stress-tolerant plants. However, little is known about the mode of action of BI-1 in the cell death regulatory pathway (Ishikawa et al., 2011). While overexpression systems sometimes include artificial or off-site effects, the observation that BI-1 overexpression improves stress tolerance suggests the importance of dissecting plants overexpressing it to further address the molecular basis of BI-1 function and cell death and stress tolerance management.As another approach to understand the molecular function of BI-1, screening of candidates interacting biochemically or functionally with BI-1 has been performed. First, Arabidopsis (Arabidopsis thaliana) BI-1 was confirmed to bind to calmodulin, like barley (Hordeum vulgare) MLO protein, a membrane-bound cell death regulator (Kim et al., 2002; Ihara-Ohori et al., 2007). Since the calmodulin-binding ability of BI-1 and MLO is necessary for their cell death-suppressing activity, Ca2+ signaling is critically involved in BI-1- and MLO-mediated cell death regulation (Kim et al., 2002; Kawai-Yamada et al., 2009). More recently, it was also demonstrated that the cell death suppression by BI-1 is mediated, at least in part, through fatty acid hydroxylase (FAH) in a Saccharomyces cerevisiae ectopic expression system (Nagano et al., 2009). In addition, Arabidopsis FAHs (AtFAH1 and AtFAH2) interact with BI-1 via cytochrome b5 at the ER, resulting in the accumulation of 2-hydroxy fatty acids (2-HFAs) in Arabidopsis plants overexpressing BI-1. 2-HFAs are typical components of the ceramide backbone of sphingolipids (Imai et al., 1995; Pata et al., 2010). Although many functions of plant sphingolipids remain to be elucidated, accumulating evidence clearly indicates that sphingolipids and their metabolism are closely involved in cell death regulation and various stress responses in plants (Ng et al., 2001; Liang et al., 2003; Townley et al., 2005; Chen et al., 2008, 2012; Wang et al., 2008; Saucedo-García et al., 2011; Dutilleul et al., 2012; Kӧnig et al., 2012; Nagano et al., 2012; Mortimer et al., 2013), implying that BI-1 plays a role in cell death regulation through sphingolipid metabolism. Sphingolipids are major components of membrane lipids and are at particularly high concentrations in membrane microdomains, known as lipid rafts in animal cells, which are essential for membrane-mediated signaling and act as a sorting platform for targeted protein traffic (Simons and Toomre, 2000; Staubach and Hanisch, 2011). In mammalian cells, sphingomyelin metabolism in lipid rafts plays a vital role in the initiation of apoptotic cell death (Milhas et al., 2010). Recent studies have demonstrated the presence of raft-like membrane microdomains in plant cells and a role for them in defense responses and targeted protein sorting (Peskan et al., 2000; Fujiwara et al., 2009; Minami et al., 2009; Melser et al., 2010; Markham et al., 2011).This study focused on membrane microdomains in relation to BI-1-mediated sphingolipid metabolism. Our findings indicated that BI-1 alters sphingolipid composition in membrane microdomains, and this is accompanied by dynamic changes in a number of detergent-resistant membrane (DRM) proteins involved in cell death regulation.  相似文献   

18.
19.
【目的】套索肽作为一类核糖体翻译后修饰肽(RiPPs)广泛分布于放线菌中,以其独特的修饰结构和多样的生理活性受到了广泛的关注。为了更好地研究未知的套索肽,期望开发基于链霉菌的无细胞转录翻译平台(下称“无细胞平台”)实现无细胞合成套索肽或其前体肽。【方法】首先尝试以不同的链霉菌构建无细胞合成平台,并以绿色荧光蛋白为报告蛋白对平台产率进行优化;在构建合适稳定的表达体系后,将包含有套索肽生物合成基因的质粒引入体系中以探索套索肽的无细胞合成。【结果】在对基于模式菌株Streptomyces lividans TK24的无细胞体系进行制备工艺、体系组分、反应条件等多个参数进行优化后,该体系最高能达到90μg/mL的荧光蛋白表达量;基于该体系成功表达了目标套索肽的前体肽,并通过融合SUMO标签增加前体肽在该体系中的稳定性。【结论】本研究成功构建了一类链霉菌无细胞平台,为丰富来源的基因表达提供了可能性。尽管该体系在对表达套索肽未知蛋白的适用性上仍有待进一步提升,但无细胞平台在天然产物的探索中将起到越来越重要的作用。  相似文献   

20.
Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号