首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.  相似文献   

2.
Li B  Dong L  Fu H  Wang B  Hertz L  Peng L 《Cell calcium》2011,50(1):42-53
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca2+ influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca2+ concentration [Ca2+]i, determined with Fura-2. The agonists were the 5-HT2B agonist fluoxetine, the α2-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP3 receptor (IP3R) agonists. In untreated sister cultures each agonist distinctly increased [Ca2+]i, but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP3R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca2+ entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca2+ stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca2+]i regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional ‘serotonin-specific reuptake inhibitors’ (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).  相似文献   

3.
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli.  相似文献   

4.
Ca2+ release from intracellular stores regulates muscle contraction and a vast array of cell functions, but its role in the central nervous system (CNS) has not been completely elucidated. A new method of blocking IP3 signaling by artificially expressing IP3 5-phosphatase has been used to clarify the functions of intracellular Ca2+ mobilization in CNS. Here I review two of such functions: the activity-dependent synaptic maintenance mechanism and the regulation of neuronal growth by spontaneous Ca2+ oscillations in astrocytes. These findings add new bases for better understanding CNS functions and suggest the presence of as yet unidentified neuronal and glial functions that are regulated by Ca2+ store-dependent Ca2+ signaling.  相似文献   

5.
Ullah G  Jung P  Machaca K 《Cell calcium》2007,42(6):556-564
Ca2+ is a fundamental intracellular signal that mediates a variety of disparate physiological functions often in the same cell. Ca2+ signals span a wide range of spatial and temporal scales, which endow them with the specificity required to induce defined cellular functions. Furthermore, Ca2+ signaling is highly plastic as it is modulated dynamically during normal physiological development and under pathological conditions. However, the molecular mechanisms underlying Ca2+ signaling differentiation during cellular development remain poorly understood. Oocyte maturation in preparation for fertilization provides an exceptionally well-suited model to elucidate Ca2+ signaling regulation during cellular development. This is because a Ca2+ signal with specialized spatial and temporal dynamics is universally essential for egg activation at fertilization. Here we use mathematical modeling to define the critical determinants of Ca2+ signaling differentiation during oocyte maturation. We show that increasing IP3 receptor (IP3R) affinity replicates both elementary and global Ca2+ dynamics observed experimentally following oocyte maturation. Furthermore, our model reveals that because of the Ca2+ dependency of both SERCA and the IP3R, increased IP3R affinity shifts the system's equilibrium to a new steady state of high cytosolic Ca2+, which is essential for fertilization. Therefore our model provides unique insights into how relatively small alterations of the basic molecular mechanisms of Ca2+ signaling components can lead to dramatic alterations in the spatio-temporal properties of Ca2+ dynamics.  相似文献   

6.
Accumulating evidence suggests that the endo-lysosomal system provides a substantial store of Ca2+ that is tapped by the Ca2+-mobilizing messenger, NAADP. In this article, we review evidence that NAADP-mediated Ca2+ release from this acidic Ca2+ store proceeds through activation of the newly described two-pore channels (TPCs). We discuss recent advances in defining the sub-cellular targeting, topology and biophysics of TPCs. We also discuss physiological roles and the evolution of this ubiquitous ion channel family.  相似文献   

7.
Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca2+ signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca2+-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb2+). Intracellular Ca2+ and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb2+ stimulated TRPC5 at concentrations greater than 1 μM. Control cells without TRPC5 showed little or no response to Pb2+ and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 μM Pb2+. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb2+ but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb2+ is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.  相似文献   

8.
Synaptic signaling, memory formation, neuronal development, and neuronal pathology are strongly influenced by the properties of intracellular Ca2+ channels, ryanodine, and inositol 1, 4, 5 trisphosphate receptors. This review will focus on recently developed and discovered pharmacological tools to modulate these channel proteins at the single-channel level. It will allow the readers of Molecular Neurobiology to evaluate the current knowledge on the pharmacological modulation of intracellular Ca2+ channels and to direct future research efforts effectively using available experimental tools and concepts.  相似文献   

9.
The importance of Ca2+ signaling in astrocytes is undisputed but a potential role of Ca2+ influx via L-channels in the brain in vivo is disputed, although expression of these channels in cultured astrocytes is recognized. This study shows that an increase in free cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes in primary cultures in response to an increased extracellular K+ concentration (45 mM) is inhibited not only by nifedipine (confirming previous observations) but also to a very large extent by ryanodine, inhibiting ryanodine receptor-mediated release of Ca2+, known to occur in response to an elevation in [Ca2+]i. This means that the actual influx of Ca2+ is modest, which may contribute to the difficulty in demonstrating L-channel-mediated Ca2+ currents in astrocytes in intact brain tissue. Chronic treatment with any of the 3 conventional anti-bipolar drugs lithium, carbamazepine or valproic acid similarly causes a pronounced inhibition of K+-mediated increase in [Ca2+]i. This is shown to be due to an inhibition of capacitative Ca2+ influx, reflected by decreased mRNA and protein expression of the ‘transient receptor potential channel’ (TRPC1), a constituent of store-operated channels (SOCEs). Literature data are cited (i) showing that depolarization-mediated Ca2+ influx in response to an elevated extracellular K+ concentration is important for generation of Ca2+ oscillations and for the stimulatory effect of elevated K+ concentrations in intact, non-cultured brain tissue, and (ii) that Ca2+ channel activity is dependent upon availability of metabolic substrates, including glycogen. Finally, expression of mRNA for Cav1.3 is demonstrated in freshly separated astrocytes from normal brain.  相似文献   

10.
Local Ca2+ transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca2+ release to activate mitochondrial Ca2+ uptake and to evoke a matrix [Ca2+] ([Ca2+]m) rise. [Ca2+]m exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca2+ release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca2+ sensitivity of both the Ca2+ release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca2+ accumulation in various apoptotic paradigms, methods are available for buffering of [Ca2+], for dissipation of the driving force of the mitochondrial Ca2+ uptake and for inhibition of the mitochondrial Ca2+ transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca2+ handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca2+ uptake on cytosolic [Ca2+] and [Ca2+]m in intact cultured cells.  相似文献   

11.
The influence of stimulus pulse duration on calcium mobilization triggering facilitation of evoked [(3)H]acetylcholine ([(3)H]ACh) release by the A(2A) adenosine receptor agonist CGS 21680C was studied in the rat phrenic nerve-hemidiaphragm. The P-type calcium channel blocker omega-agatoxin IVA (100 nM) decreased [(3)H]ACh release evoked with pulses of 0.04-ms duration, whereas nifedipine (1 microM) inhibited transmitter release with pulses of 1-ms duration. Depletion of intracellular calcium stores by thapsigargin (2 microM) decreased [(3)H]ACh release evoked by pulses of 1 ms, an effect observed even in the absence of extracellular calcium. With short (0.04-ms) stimulation pulses, when P-type calcium influx triggered transmitter release, facilitation of [(3)H]ACh release by CGS 21680C (3 nM) was attenuated by both thapsigargin (2 microM) and nifedipine (1 microM). With longer stimuli (1 ms), a situation in which both thapsigargin-sensitive internal stores and L-type channels are involved in ACh release, pretreatment with either omega-agatoxin IVA (100 nM) or nifedipine (1 microM) reduced the facilitatory effect of CGS 21680C (3 nM). The results suggest that A(2A) receptor activation facilitates ACh release from motor nerve endings through alternatively mobilizing the available calcium pools (thapsigargin-sensitive internal stores and/or P- or L-type channels) that are not committed to the release process in each stimulation condition.  相似文献   

12.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

13.
Neuronal nicotinic acetylcholine receptors (nAChR) can regulate several neuronal processes through Ca2+-dependent mechanisms. The versatility of nAChR-mediated responses presumably reflects the spatial and temporal characteristics of local changes in intracellular Ca2+ arising from a variety of sources. The aim of this study was to analyse the components of nicotine-evoked Ca2+ signals in SH-SY5Y cells, by monitoring fluorescence changes in cells loaded with fluo-3 AM. Nicotine (30 microm) generated a rapid elevation in cytoplasmic Ca2+ that was partially and additively inhibited (40%) by alpha7 and alpha3beta2* nAChR subtype selective antagonists; alpha3beta4* nAChR probably account for the remaining response (60%). A substantial blockade (80%) by CdCl2 (100 microm) indicates that voltage-operated Ca2+ channels (VOCC) mediate most of the nicotine-evoked response, although the alpha7 selective antagonist alpha-bungarotoxin (40 nm) further decreased the CdCl2- resistant component. The elevation of intracellular Ca2+ levels provoked by nicotine was sustained for at least 10 min and required the persistent activation of nAChR throughout the response. Intracellular Ca2+ stores were implicated in both the initial and sustained nicotine-evoked Ca2+ responses, by the blockade observed after ryanodine (30 microm) and the inositoltriphosphate (IP3)-receptor antagonist, xestospongin-c (10 microm). Thus, nAChR subtypes are differentially coupled to specific sources of Ca2+: activation of nAChR induces a sustained elevation of intracellular Ca2+ levels which is highly dependent on the activation of VOCC, and also involves Ca2+ release from ryanodine and IP3-dependent intracellular stores. Moreover, the alpha7, but not alpha3beta2* nAChR, are responsible for a fraction of the VOCC-independent nicotine-evoked Ca2+ increase that appears to be functionally coupled to ryanodine sensitive Ca2+ stores.  相似文献   

14.
The mitochondria-associated membrane (MAM) is a sub-region of the endoplasmic reticulum (ER) that facilitates crosstalk between the ER and mitochondria. The MAM actively influences vital cellular processes including Ca2+ signaling and protein folding. Detergent-resistant microdomains (DRMs) may localize proteins to the mitochondria/MAM interface to coordinate these events. However, the protein composition of DRMs isolated from this region is not known. Lipid-raft enriched DRMs were isolated from a combined mitochondria/MAM sample and analyzed using two-dimensional reversed-phased tandem mass spectrometry. Strict post-acquisition filtering of the acquired data led to the confident identification 250 DRM proteins. The majority (58%) of the identified proteins are bona fide mitochondrial or ER proteins according to Gene Ontology annotation. Additionally, 74% of the proteins have previously been noted as MAM-resident or -associated proteins. Furthermore, ∼20% of the identified proteins have a documented association with lipid rafts. Most importantly, known internal LR marker proteins (inositol 1,4,5-trisphosphate receptor type 3, erlin-2, and voltage-dependent anion channel 1) were detected as well as most of the components of the mitochondrial/MAM-localized Ca2+ signaling complex. Our study provides the basis for future work probing how the protein activities at the mitochondrion/MAM interface are dependent upon the integrity of these internal lipid-raft-like domains.  相似文献   

15.
《Cell calcium》2016,59(6):617-627
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such ‘acidic calcium stores’ affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed “acidic store-operated calcium entry (aSOCE)”. aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.  相似文献   

16.
Cytosolic calcium acts as both a coagonist and an inhibitor of the type 1 inositol 1,4,5-trisphosphate (InsP3)-gated Ca channel, resulting in a bell-shaped Ca dependence of channel activity (Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Nature. 351:751-754; Finch, E.A., T.J. Turner, and S.M. Goldin. 1991. Science. 252: 443-446; Iino, M. 1990. J. Gen. Physiol. 95:1103-1122). The ability of Ca to inhibit channel activity, however, varies dramatically depending on InsP3 concentration (Combettes, L., Z. Hannaert-Merah, J.F. Coquil, C. Rousseau, M. Claret, S. Swillens, and P. Champeil. 1994. J. Biol. Chem. 269:17561-17571; Kaftan, E.J., B.E. Ehrlich, and J. Watras. 1997. J. Gen. Physiol. 110:529-538). In the present report, we have extended the characterization of the effect of cytosolic Ca on both InsP3 binding and InsP3-gated channel kinetics, and incorporated these data into a mathematical model capable of simulating channel kinetics. We found that cytosolic Ca increased the Kd of InsP3 binding approximately 3.5-fold, but did not influence the maximal number of binding sites. The ability of Ca to decrease InsP3 binding is consistent with the rightward shift in the bell-shaped Ca dependence of InsP3-gated Ca channel activity. High InsP3 concentrations are able to overcome the Ca-dependent inhibition of channel activity, apparently due to a low affinity InsP3 binding site (Kaftan, E.J., B.E. Ehrlich, and J. Watras. 1997. J. Gen. Physiol. 110:529-538). Constants from binding analyses and channel activity determinations were used to develop a mathematical model that fits the complex Ca-dependent regulation of the type 1 InsP3-gated Ca channel. This model accurately simulated both steady state data (channel open probability and InsP3 binding) and kinetic data (channel activity and open time distributions), and yielded testable predictions with regard to the regulation of this intracellular Ca channel. Information gained from these analyses, and our current molecular model of this Ca channel, will be important for understanding the basis and regulation of intracellular Ca waves and oscillations in intact cells.  相似文献   

17.
18.
The effect of ceramide on the cytoplasmic Ca2+ concentration ([Ca2+]i) varies depending on the cell type. We have found that in Jurkat human T cells ceramide increases the [Ca2+]i from a thapsigargin-sensitive calcium pool and the subsequent activation of a capacitative Ca2+ entry. This effect occurs both in the presence and in the absence of extracellular calcium. Addition of ceramine, a non-hydrolysable analogue of ceramide, reproduced its effect on the [Ca2+]i ruling out that this is due to the conversion of ceramide to sphingosine. The effect of ceramide was additive to that obtained by sphingosine, but not to the Jurkat T cells specific antibody OKT3. However, different to the latter, ceramide do not induced an elevation of InsP3. The opening of a store operated Ca2+ channel by ceramide was corroborated by experiments of Fura-2 quenching, using Mn2+ as a surrogate for Ca2+ and confirmed by whole-cell recording patch clamp techniques.  相似文献   

19.
FKBP-12 mediates the immunosuppressive actions of FK506 and rapamycin, and modulates the activities of the ryanodine, IP3 and type 1 TGF-ss receptors. Additionally, FKBP-12 possesses cis-trans peptidylprolyl isomerase (rotamase) activity. We have discovered that recombinant FKBP-12 readily forms a dimer and a small amount of trimer under nonreducing conditions. A mutant with substitution at the sole cysteine residue of FKBP-12 (C23S) did not form dimers or trimers. Using mutants with 5% or less rotamase activity, the formation of dimers was independent of enzymatic activity. The formation of trimers was abrogated by a F36Y substitution, even though dimer formation was preserved. Dimers were also observed with native FKBP-12 that was detached from rabbit skeletal muscle ryanodine receptors using FK590. The multimers of FKBP-12 could interact with molecular targets distinctly from the FKBP-12 monomer, for example, by facilitating the assembly of multimeric receptors or coordinating the activity of receptor subunits.  相似文献   

20.
Patel S  Muallem S 《Cell calcium》2011,50(2):109-112
Changes in the concentration of cytosolic Ca2+ form the basis of a ubiquitous signal transduction pathway. Accumulating evidence implicates acidic organelles in the control of Ca2+ dynamics in organisms across phyla. In this special issue, we discuss Ca2+ signalling by these “acidic Ca2+ stores” which include acidocalcisomes, vacuoles, the endo-lysosomal system, lysosome-related organelles, secretory vesicles and the Golgi complex. Ca2+ release from these morphologically very different organelles is mediated by members of the TRP channel superfamily and two-pore channels. Inositol trisphosphate and ryanodine receptors which are traditionally viewed as endoplasmic reticulum Ca2+ release channels can also mobilize acidic Ca2+ stores. Ca2+ uptake into acidic Ca2+ stores is driven by Ca2+ ATPases and Ca2+/H+ exchangers. In animal cells, the Ca2+-mobilizing messenger NAADP plays a central role in mediating Ca2+ signals from acidic Ca2+ stores through activation of two-pore channels. These signals are important for several physiological processes including muscle contraction and differentiation. Dysfunctional acidic Ca2+ stores have been implicated in diseases such as acute pancreatitis and lysosomal storage disorders. Acidic Ca2+ stores are therefore emerging as essential components of the Ca2+ signalling network and merit extensive further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号