首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-κB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6M241T and US2, but not the soluble degradation substrate α1-antitrypsin nullHK. These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.  相似文献   

4.
The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent.  相似文献   

5.
6.
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.  相似文献   

7.
8.
Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown. We thus examined roles of ER stress in AGE2- or AGE3-induced suppression of osteoblastogenesis of ST2 cells. An ER stress inducer, thapsigargin (TG), induced osteoblastic differentiation of ST2 cells by increasing the levels of Osterix, type 1 collagen (Col1), alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA. AGE2 or AGE3 suppressed the levels of ER stress sensors such as IRE1α, ATF6 and OASIS, while they increased the levels of PERK and its downstream molecules, ATF4. A reduction in PERK level by siRNA did not affect the AGEs-induced suppression of the levels of Osterix, Col1 and OCN mRNA. In conclusion, AGEs inhibited the osteoblastic differentiation of stromal cells by suppressing ER stress sensors and accumulating abnormal proteins in the cells. This process might accelerate AGEs-induced suppression of bone formation found in diabetes mellitus.  相似文献   

9.
Human Ero1-Lα catalyzes the formation of disulfide bond and hence plays an essential role in protein folding. Understanding the mechanism of disulfide bond formation in mammals is important because of the involvement of protein misfolding in conditions such as diabetes, arthritis, cancer, and aging. However, the crystal structure of the enzyme is not available yet, which seriously hinders the understanding of biological function of Ero1-Lα. Based on the crystal structure of yeast Ero1p, a rational three-dimensional structural model of Ero1-Lα was built and the characteristics of the enzyme were hence investigated. The characteristic similarities and differences between Ero1-Lα and Ero1p were compared on the basis of computational and experimental results, providing the first insight into the structure-function relationships of the enzymes. Both calculation and experiment got the concordant conclusion that FAD binds more tightly with Ero1-Lα than Ero1p. In addition, the probable electron transfer pathway was proposed on the basis of the structural models.  相似文献   

10.
11.
12.
13.
Recent genetic work characterized homozygous mutations in the SIL1 gene as cause for the neurodegeneration that is associated with Marinesco-Sj?gren syndrome in man and the woozy mouse mutant. All reported mutations were expected to result in loss of Sil1 function. Sil1 has previously been shown to act as nucleotide exchange factor for the molecular chaperone immunoglobulin heavy chain binding protein (BiP) in the lumen of the endoplasmic reticulum (ER). In the yeast ER Lhs1p was shown to be able to substitute for Sil1p and to represent an alternative nucleotide exchange activity. Therefore, by analogy the mammalian ortholog of Lhs1p, Grp170, was suggested to be able to compensate for the loss of Sil1 function in many mammalian organs. Here we characterize mammalian Grp170 as alternative nucleotide exchange factor for BiP, thus providing a likely explanation for the non-lethal phenotype of the homozygous human and murine SIL1 mutations.  相似文献   

14.
15.
16.
17.
18.
Diabetic retinopathy is a chronic low-grade inflammatory disease; however, the mechanisms remain elusive. In the present study, we demonstrated that endoplasmic reticulum (ER) stress was activated in the retina in animal models of diabetes and oxygen-induced retinopathy (OIR). Induction of ER stress by tunicamycin resulted in significantly increased expression of inflammatory molecules in the retina. Inhibition of ER stress by chemical chaperone 4-phenyl butyric acid ameliorated inflammation in cultured human retinal endothelial cells exposed to hypoxia, and in the retinas of diabetic and OIR mice. These findings indicate that ER stress is a potential mediator of retinal inflammation in diabetic retinopathy.  相似文献   

19.
20.
Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号