首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee M  Choy WC  Abid MR 《PloS one》2011,6(12):e28454

Background

ADPH oxidase-derived reactive oxygen species (ROS) play important roles in redox homeostasis and signal transduction in endothelial cells (ECs). We previously demonstrated that c-Src plays a key role in VEGF-induced, ROS-dependent selective activation of PI3K-Akt but not PLCγ-1-ERK1/2 signaling pathways. The aim of the present study was to understand how VEGFR-2-c-Src signaling axis ‘senses’ NADPH oxidase-derived ROS levels and couples VEGF activation of c-Src to the redox state of ECs.

Methodology/Principal Findings

Using biotinylated probe that detects oxidation of cysteine thiol (cys-OH) in intracellular proteins, we demonstrate that VEGF induced oxidative modification in c-Src and VEGFR-2, and that reduction in ROS levels using siRNA against p47phox subunit of Rac1-dependent NADPH oxidase inhibited this phenomenon. Co-immunoprecipitation studies using human coronary artery ECs (HCAEC) showed that VEGF-induced ROS-dependent interaction between VEGFR-2 and c-Src correlated with their thiol oxidation status. Immunofluorescence studies using antibodies against internalized VEGFR-2 and c-Src demonstrated that VEGF-induced subcellular co-localization of these tyrosine kinases were also dependent on NADPH oxidsase-derived ROS.

Conclusion/Significance

These results demonstrate that VEGF induces cysteine oxidation in VEGFR-2 and c-Src in an NADPH oxidase-derived ROS-dependent manner, suggesting that VEGFR-2 and c-Src can ‘sense’ redox levels in ECs. The data also suggest that thiol oxidation status of VEGFR-2 and c-Src correlates with their ability to physically interact with each other and c-Src activation. Taken together, these findings suggest that prior to activating downstream c-Src-PI3K-Akt signaling pathway, VEGFR-2-c-Src axis requires an NADPH oxidase-derived ROS threshold in ECs.  相似文献   

2.
Store-operated Ca2+ entry (SOCE) is a widespread mechanism to elevate the intracellular Ca2+ concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca2+ store depletion that subsequently activates Ca2+-release-activated-Ca2+ (CRAC) channels, a prototype of store-operated Ca2+ (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca2+ sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.  相似文献   

3.
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca2+ mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca2+ into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca2+ release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca2+]i trough L-type Ca2+ channels activation. In both cell types, a relatively slower Ca2+ release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca2+ released from IP3R of skeletal muscle also promotes mitochondrial Ca2+ uptake. We review here these actions of insulin on intracellular Ca2+ channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca2+ release from the SER.  相似文献   

4.
5.
Induction of apoptotic cell death is emerging as a promising strategy for prevention and treatment of obesity because removing of adipocytes via apoptosis may result in reducing body fat and a long-lasting maintenance of weight loss. However, the mechanisms controlling adipocyte apoptosis are unknown and even the ability of adipocytes to undergo apoptosis has not been conclusively demonstrated. We have shown previously that the specific Ca2+ signal, sustained increase in intracellular Ca2+, triggers apoptotic cell death via activation of Ca2+-dependent proteases and that the apoptosis-inducing effect of the hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is mediated through Ca2+ signaling. Here, we report that 1,25(OH)2D3 induces apoptosis in mature mouse 3T3-L1 adipocytes via activation of Ca2+-dependent calpain and Ca2+/calpain-dependent caspase-12. Treatment of adipocytes with 1,25(OH)2D3 induced, in concentration- and time-dependent fashion, a sustained increase in the basal level of intracellular Ca2+. The increase in Ca2+ was associated with induction of apoptosis and activation of μ-calpain and caspase-12. Our results demonstrate that Ca2+-mediated apoptosis can be induced in mature adipocytes and that the apoptotic molecular targets activated by 1,25(OH)2D3 in these cells are Ca2+-dependent calpain and caspase-12. These findings provide rationale for evaluating the role of vitamin D in prevention and treatment of obesity.  相似文献   

6.
Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions.  相似文献   

7.
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca2+ signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca2+ signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca2+ ([Ca2+]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca2+]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd3+, two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca2+-activated K+ channels but not chromanol 293B, a selective blocker of cAMP-activated K+ channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca2+]cyt, which was abolished in Ca2+-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca2+-dependent DBS, likely through the ROC, intermediate conductance Ca2+-activated K+ channels, and CFTR channels. This study not only reveals that [Ca2+]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca2+-induced DBS.  相似文献   

8.
9.
Hydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca2+ concentration ([Ca2+]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca2+ signals in endothelial cells is unclear. The present study aimed at assessing whether and how NaHS, a widely employed H2S donor, stimulates pro-angiogenic Ca2+ signals in Ea.hy926 cells, a suitable surrogate for mature endothelial cells, and human endothelial progenitor cells (EPCs). We found that NaHS induced a dose-dependent increase in [Ca2+]i in Ea.hy926 cells. NaHS-induced Ca2+ signals in Ea.hy926 cells did not require extracellular Ca2+ entry, while they were inhibited upon pharmacological blockade of the phospholipase C/inositol-1,4,5-trisphosphate (InsP3) signalling pathway. Moreover, the Ca2+ response to NaHS was prevented by genistein, but not by SU5416, which selectively inhibits VEGFR-2. However, VEGF-induced Ca2+ signals were suppressed by dl-propargylglycine (PAG), which blocks the H2S-producing enzyme, cystathionine γ-lyase. Consistent with these data, VEGF-induced proliferation and migration were inhibited by PAG in Ea.hy926 cells, albeit NaHS alone did not influence these processes. Conversely, NaHS elevated [Ca2+]i only in a modest fraction of circulating EPCs, whereas neither VEGF-induced Ca2+ oscillations nor VEGF-dependent proliferation were affected by PAG. Therefore, H2S-evoked elevation in [Ca2+]i is essential to trigger the pro-angiogenic Ca2+ response to VEGF in mature endothelial cells, but not in their immature progenitors.  相似文献   

10.
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, ISOC. Indeed, ISOC is a relatively small inward Ca2+ current that exhibits an approximate +40 mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of ISOC, although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of ISOC requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4–protein 4.1 physical linkage regulates ISOC activation following Ca2+ store depletion.  相似文献   

11.
This work investigated the role of Ca2+ mobilization and heterotrimeric G protein activation in mediating angiotensin II-dependent tyrosine phosphorylation signaling patterns. We demonstrate that the predominant, angiotensin II-dependent, tyrosine phosphorylation signaling patterns seen in vascular smooth muscle cells are blocked by the intracellular Ca2+ chelator BAPTA-AM, but not by the Ca2+ channel blocker verapamil. Activation of heterotrimeric G proteins with NaF resulted in a divergent signaling effect; NaF treatment was sufficient to increase tyrosine phosphorylation levels of some proteins independent of angiotensin II treatment. In the same cells, NaF alone had no effect on other cellular proteins, but greatly potentiated the ability of angiotensin II to increase the tyrosine phosphorylation levels of these proteins. Two proteins identified in these studies were paxillin and Jak2. We found that NaF treatment alone, independent of angiotensin II stimulation, was sufficient to increase the tyrosine phosphorylation levels of paxillin. Furthermore, the ability of either NaF and/or angiotensin II to increase tyrosine phosphorylation levels of paxillin is critically dependent on intracellular Ca2+. In contrast, angiotensin II-mediated Jak2 tyrosine phosphorylation was independent of intracellular Ca2+ mobilization and extracellular Ca2+ entry. Thus, our data suggest that angiotensin II-dependent tyrosine phosphorylation signaling cascades are mediated through a diverse set of signaling pathways that are partially dependent on Ca2+ mobilization and heterotrimeric G protein activation.  相似文献   

12.
The endothelium is actively involved in many functions of the cardiovascular system, such as the modulation of arterial pressure and the maintenance of blood flow. These functions require a great versatility of the intracellular Ca2+ signaling that resides in the fact that different signals can be encoded by varying the frequency and the amplitude of the Ca2+ response. Cells use both extracellular and intracellular Ca2+ pools to modulate the intracellular Ca2+ concentration. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R), located on the endoplasmic reticulum (ER), is responsible for the release of Ca2+ from the intracellular store. The proteins STIM1 and STIM2 are also located on the ER and they are involved in the activation of a store-operated Ca2+ entry (SOCE). Due to their Ca2+ sensor property and their close proximity with IP3Rs on the ER, STIMs could modulate the activity of IP3R. In this study, we showed that STIM1 and STIM2 are expressed in bovine aortic endothelial cells and they both interact with IP3R. While STIM2 appears to play a minor role, STIM1 plays an important role in the regulation of agonist-induced Ca2+ mobilization in BAECs by a positive effect on both the SOCE and the IP3R-dependent Ca2+ release.  相似文献   

13.
Microglial activation involves Ca2+ signaling, and numerous receptors can evoke elevation of intracellular Ca2+. ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca2+ rise through release from intracellular Ca2+ stores and store-operated Ca2+ entry, and some have been implicated in microglial migration. This Ca2+ rise is expected to activate small-conductance Ca2+-dependent K+ (SK) channels, if present. We previously found that SK3 (KCa2.3) and KCa3.1 (SK4/IK1) are expressed in rat microglia and contribute to LPS-mediated activation and neurotoxicity. However, neither current has been studied by elevating Ca2+ during whole-cell recordings. We hypothesized that, rather than responding only to Ca2+, each channel type might be coupled to different receptor-mediated pathways. Here, our objective was to determine whether the channels are differentially activated by P2Y receptors, and, if so, whether they play differing roles. We used primary rat microglia and a rat microglial cell line (MLS-9) in which riluzole robustly activates both SK3 and KCa3.1 currents. Using electrophysiological, Ca2+ imaging and pharmacological approaches, we show selective functional coupling of KCa3.1 to UTP-mediated P2Y2 receptor activation. KCa3.1 current is activated by Ca2+ entry through Ca2+-release-activated Ca2+ (CRAC/Orai1) channels, and both CRAC/Orai1 and KCa3.1 channels facilitate refilling of Ca2+ stores. The Ca2+ dependence of KCa3.1 channel activation was skewed to abnormally high concentrations, and we present evidence for a close physical association of the two channel types. Finally, migration of primary rat microglia was stimulated by UTP and inhibited by blocking either KCa3.1 or CRAC/Orai1 channels. This is the first report of selective coupling of one type of SK channel to purinergic stimulation of microglia, transactivation of KCa3.1 channels by CRAC/Orai1, and coordinated roles for both channels in store refilling, Ca2+ signaling and microglial migration.  相似文献   

14.
Intracellular Ca2+ is one of the crucial signalings that modulate various cellular functions. The dysregulation of Ca2+ homeostasis has been suggested as an important event in driving the expression of the malignant phenotypes, such as proliferation, migration, invasion, and metastasis. Cell migration is an early prerequisite for tumor metastasis that has a significant impact on patient prognosis. During cell migration, the exquisite spatial and temporal organization of intracellular Ca2+ provides a rapid and robust way for the selective activation of signaling components that play a central role in cytoskeletal reorganization, traction force generation, and focal adhesion dynamics. A number of known molecular components involved in Ca2+ influx pathways, including stromal interaction molecule (STIM)/Orai-mediated store-operated Ca2+ entry (SOCE) and the Ca2+-permeable transient receptor potential (TRP) channels, have been implicated in cancer cell migration and tumor metastasis. The clinical significance of these molecules, such as STIM proteins and the TRPM7 channel, in tumor progression and their diagnostic and prognostic potentials have also been demonstrated in specific cancer types. In this review, we summarize the recent advances in understanding the important roles and regulatory mechanisms of these Ca2+ influx pathways on malignant behaviors of tumor cells. The clinical implications in facilitating current diagnostic and therapeutic procedures are also discussed.  相似文献   

15.
16.
We examined the effect of tricyclic antidepressants on intracellular Ca2+ signalling in cultured cells of neuronal and glial origin. High concentrations of amitriptyline and desipramine increased the intracellular Ca2+ in PC-12 and U-87 MG cells. In PC-12 cells amitriptyline induced a biphasic rise in intracellular Ca2+. A rapid and transient increase due to release of Ca2+ from intracellular pools was followed by sustained elevation of [Ca2+]i due to influx from the extracellular medium. Desipramine evoked the Ca2+ release from intracellular pools but the influx of Ca2+ was not elicited. In U-87 MG cells both the drugs induced Ca2+ release from intracellular pools, however amitriptyline also induced a transient influx of Ca2+. To delineate the mechanisms involved in mobilization of Ca2+ by the drugs pharmacological agents that inhibit IP3 formation in cells and Ca2+ channel blockers were used and changes in [Ca2+]i and membrane potential were monitored. The results show that both the drugs release Ca2+ from IP3 sensitive pools by activation of phospholipase C and amitriptyline in addition activates a non specific cation channel in the plasma membrane of cells. Paradoxically at relatively lower concentrations (< 50 M) amitriptyline and desipramine inhibited the Ca2+ signal induced by adenosine triphosphate in both the cell types. Our data demonstrate that tricyclic antidepressants at different doses may have inhibitory or stimulatory effects on cellular Ca2+ signalling.  相似文献   

17.
We studied the PI3K/Akt signaling pathway modulation and its involvement in the stimulation of ROS 17/2.8 osteoblast-like cell proliferation by extracellular ATP. A dose- and time-dependent increase in Akt-Ser 473 phosphorylation (p-Akt) was observed. p-Akt was increased by ATPγS and UTP, but not by ADPβS. Akt activation was abolished by PI3K inhibitors and reduced by inhibitors of PI-PLC, Src, calmodulin (CaM) but not of CaMK. p-Akt was diminished by cell incubation in a Ca2+-free medium but not by the use of L-type calcium channel blockers. The rise in intracellular Ca2+ induced by ATP was potentiated in the presence of Ro318220, a PKC inhibitor, and attenuated by the TPA, a known activator of PKC. ATP-dependent p-Akt was diminished by TPA and augmented by Ro318220 treatment in a Ca2+-containing but not in a Ca2+-free medium. ATP stimulated the proliferation of both ROS 17/2.8 cells and rat osteoblasts through PI3K/Akt. In the primary osteoblasts, ATP induces alkaline phosphatase activity via PI3K, suggesting that the nucleotide promotes osteoblast differentiation. These results suggest that ATP stimulates osteoblast proliferation through PI-PLC linked-P2Y2 receptors and PI3K/Akt pathway activation involving Ca2+, CaM and Src. PKC seems to regulate Akt activation through Src and the Ca2+ influx/CaM pathway.  相似文献   

18.
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+] i and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.  相似文献   

19.
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.  相似文献   

20.
Mobilization of intracellular Ca2+ stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizing nucleotide present in many cell types and species, from plants to animals. cADPR is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide. The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. It has been shown that many extracellular stimuli can induce cADPR production that leads to calcium release or influx, establishing cADPR as a second messenger. cADPR has been linked to a wide variety of cellular processes, but the molecular mechanisms regarding cADPR signaling remain elusive. The aim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advances involving the mechanism and physiological functions of cADPR-mediated Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号