首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Neurognathostomiasis is a severe form of human gnathostomiasis which can lead to disease and death. Diagnosis of neurognathostomiasis is made presumptively by using clinical manifestations. Immunoblotting, which recognizes antigenic components of molecular mass 21 kDa and 24 kDa in larval extracts of Gnathostoma spinigerum (Gs 21/24), has high sensitivity and specificity for diagnosis of neurognathostomiasis. However, only very small amounts of the Gs 21/24 antigens can be prepared from parasites harvested from natural or experimental animals. To overcome this problem, we recently produced a recombinant matrix metalloproteinase (rMMP) protein from G. spinigerum. In this study, we evaluated this rMMP alongside the Gs 21/24 antigens for serodiagnosis of human neurognathostomiasis. We studied sera from 40 patients from Srinagarind Hospital, Khon Kaen University, Thailand, with clinical criteria consistent with those of neurognathostomiasis, and sera from 30 healthy control adults from Thailand. All sera were tested for specific IgG antibodies against both G. spinigerum crude larval extract and rMMP protein using immunoblot analysis. The sensitivity and specificity for both antigenic preparations were all 100%. These results show that G. spinigerum rMMP protein can be used as an alternative diagnostic antigen, in place of larval extract, for serodiagnosis of neurognathostomiasis.  相似文献   

3.
Human gnathostomiasis is a parasitic disease caused by Gnathostoma nematode infection. A rapid, reliable, and practical immunoassay, named dot immuno-gold filtration assay (DIGFA), was developed to supporting clinical diagnosis of gnathostomiasis. The practical tool detected anti-Gnathostoma-specific IgG4 in human serum using crude extract of third-stage larvae as antigen. The result of the test was shown by anti-human IgG4 monoclonal antibody conjugated colloidal gold. The sensitivity and specificity of the test were both 100% for detection in human sera from patients with gnathostomiasis (13/13) and from healthy negative controls (50/50), respectively. Cross-reactivity with heterogonous serum samples from patients with other helminthiases ranged from 0 (trichinosis, paragonimiasis, clonorchiasis, schistosomiasis, and cysticercosis) to 25.0% (sparganosis), with an average of 6.3% (7/112). Moreover, specific IgG4 antibodies diminished at 6 months after treatment. This study showed that DIGFA for the detection of specific IgG4 in human sera could be a promising tool for the diagnosis of gnathostomiasis and useful for evaluating therapeutic effects.  相似文献   

4.
Serum from successful vaccine trials against the sheep scab mite, Psoroptes ovis, was used to immunoscreen a cDNA library constructed from mixed-stage and gender P. ovis to identify potential recombinant vaccine candidates. Immunodominant recombinant proteins recognised by IgG in these sera were selected for further analysis. Two candidates were identified in this way; a catchin-like protein (CLP) and a novel mu class glutathione S-transferase (GST). Both candidates were expressed in bacteria as recombinant proteins, the GST as an active enzyme, and combined with four other recombinant allergens in a multi-component recombinant vaccine. Strong serum IgG responses were induced in sheep against each of the components of the recombinant vaccine, however, the protective efficacy of the vaccine could not be determined because of variability in the establishment of a challenge infection.  相似文献   

5.
Malaria represents the world’s greatest public health problem in terms of number of people affected, levels of morbidity and mortality in tropical and subtropical countries. Malaria parasites are members of the Apicomplexa, family of Plasmodiidae. Histidine-rich protein-II secreted by Plasmodium falciparum is known to be a compelling marker in malaria diagnosis and follow-up. In our present study, we have optimized the batch fermentation and downstream process for large scale production of recombinant P. falciparum HRP-II 62 kDa protein for diagnostic application. The culture broth was effectively induced with IPTG twice at different time intervals to sustain induction for a long period. Batch fermentation resulted in a wet weight of 61.34 g/L and dry cell biomass 12.81 g/L. With the improved downstream process, purified recombinant protein had a yield of 304.60 mg/L. The authenticity of the purified recombinant protein was confirmed via western blotting using indigenously developed HRP-II specific monoclonal antibodies and known positive human clinical sera samples. Further, the reactivity of recombinant HRP-II protein was validated using commercially available immuno chromatographic strips. Indirect ELISA using recombinant purified protein recognized the P. falciparum specific antibodies in suspected human sera samples. Our results clearly suggest that the recombinant HRP-II protein produced via batch fermentation has immense potential for routine diagnostic application.  相似文献   

6.
Identification and molecular characterization of Babesia gibsoni proteins with potential antigenic properties are crucial for the development and validation of the serodiagnostic method. In this study, we isolated a cDNA clone encoding a novel B. gibsoni 76-kDa protein by immunoscreening of the parasite cDNA library. Computer analysis revealed that the protein presents a glutamic acid-rich region in the C-terminal. Therefore, the protein was designated as B. gibsoni glutamic acid-rich protein (BgGARP). A BLASTp analysis of a translated BgGARP polypeptide demonstrated that the peptide shared a significant homology with a 200-kDa protein of Babesia bigemina and Babesia bovis. A truncated BgGARP cDNA (BgGARPt) encoding a predicted 13-kDa peptide was expressed in Escherichia coli (E. coli), and mouse antisera against the recombinant protein were used to characterize a corresponding native protein. The antiserum against recombinant BgGARPt (rBgGARPt) recognized a 140-kDa protein in the lysate of infected erythrocytes, which was detectable in the cytoplasm of the parasites by confocal microscopic observation. In addition, the specificity and sensitivity of enzyme-linked immunosorbent assay (ELISA) with rBgGARPt were evaluated using B. gibsoni-infected dog sera and specific pathogen-free (SPF) dog sera. Moreover, 107 serum samples from dogs clinically diagnosed with babesiosis were examined using ELISA with rBgGARPt. The results showed that 86 (80.4%) samples were positive by rBgGARPt-ELISA, which was comparable to IFAT and PCR as reference test. Taken together, these results demonstrate that BgGARP is a suitable serodiagnostic antigen for detecting antibodies against B. gibsoni in dogs.  相似文献   

7.
Theileriosis of small ruminants in the northwest of China is a protozoan disease that restricts the development of the livestock industry. The disease is caused by infection with Theileria uilenbergi and Theileria luwenshuni, both of which are transmitted by ixodid Heamaphysalis ticks. The development of serological tools as a means of integrated control of the disease is an urgent and important requirement. Here we describe the identification and partial recombinant expression of a T. uilenbergi immunodominant protein (TuIP), which was identified by immunoscreening of a merozoite cDNA library. Using the recombinant TuIP (rTuIP), a novel indirect ELISA was established using 329 negative serum samples to determine the cut-off value. The internal quality control revealed satisfactory stability and repeatability of the assay. Preliminary validation using 128 positive and 48 negative reference samples demonstrated that the rTuIP ELISA is able to detect T. uilenbergi infection with high sensitivity and specificity. No cross-reactivity was found in sera from animals infected with Theileria lestoquardi, Babesia sp. China or Anaplasma ovis. Furthermore, circulating antibodies were detected in sera collected from endemic regions in China. Analyses of the antibody responses of experimentally infected animals demonstrated that tick infestation resulted in a sharply rising and stronger production of specific antibodies against TuIP while inoculation with infected blood induced an earlier production of TuIP-specific antibodies. The persistence of the TuIP-specific antibodies lasted more than 100 days p.i. These data indicate the usefulness of the TuIP antigen for the development of diagnostic methods and as a potential candidate for vaccine design.  相似文献   

8.
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.  相似文献   

9.
Babesia gibsoni causes canine babesiosis. Here, we describe the identification and characterization of a novel gene, BgP22, containing an open reading frame of 621 bp and encoding a 22-kDa protein from B. gibsoni, as a serodiagnostic candidate. The recombinant BgP22 (rBgP22) was expressed and used as an antigen to produce anti-rBgP22 sera in mice. Using these anti-rBgP22 sera, a native 22-kDa protein was recognized by Western blot analysis and observed in the membrane of the parasites by immunofluorescent antibody tests (IFAT). The enzyme-linked immunosorbent assay (ELISA) using the rBgP22 detected specific antibodies to this protein in the sera of dogs experimentally and naturally infected with B. gibsoni in chronic stage. Furthermore, it did not show a cross reaction with the closely related apicomplexan parasites, indicating that the rBgP22 could be used as a diagnostic antigen for a detection of the chronic carrier stages of B. gibsoni infection.  相似文献   

10.
The mature domain of a cysteine protease of Spirometra erinacei plerocercoid larva (i.e., sparganum) was expressed in Escherichia coli, and its value as an antigen for the serodiagnosis of sparganosis was investigated. The recombinant protein (rSepCp-1) has the molecular weight of 23.4 kDa, and strongly reacted with the sparganum positive human or mice sera but not with negative sera by immunoblotting. ELISA with rSepCp-1 protein or sparganum crude antigen (SeC) was evaluated for the serodiagnosis of sparganosis using patient''s sera. The sensitivity and specificity of ELISA using rSepCp-1 protein were 95.0% (19/20) and 99.1% (111/112), respectively. In contrast, the sensitivity and specificity of ELISA with SeC were 100% (20/20) and 96.4% (108/112), respectively. Moreover, in experimentally infected mice, the sensitivity and specificity of both ELISA assays were 100% for the detection of anti-sparganum IgG. It is suggested that the rSepCp-1 protein-based ELISA could provide a highly sensitive and specific assay for the diagnosis of sparganosis.  相似文献   

11.
The present study reports a human case of cutaneous gnathostomiasis with recurrent migratory nodule and persistent eosinophilia in China. A 52-year-old woman from Henan Province, central China, presented with recurrent migratory reddish swelling and subcutaneous nodule in the left upper arm and on the back for 3 months. Blood examination showed eosinophila (21.2%), and anti-sparganum antibodies were positive. Skin biopsy of the lesion and histopathological examinations revealed dermal infiltrates of eosinophils but did not show any parasites. Thus, the patient was first diagnosed as sparganosis; however, new migratory swellings occurred after treatment with praziquantel for 3 days. On further inquiring, she recalled having eaten undercooked eels and specific antibodies to the larvae of Gnathostoma spinigerum were detected. The patient was definitely diagnosed as cutaneous gnathostomiasis caused by Gnathostoma sp. and treated with albendazole (1,000 mg/day) for 15 days, and the subsequent papule and blister developed after the treatment. After 1 month, laboratory findings indicated a reduced eosinophil count (3.3%). At her final follow-up 18 months later, the patient had no further symptoms and anti-Gnathostoma antibodies became negative. Conclusively, the present study is the first report on a human case of cutaneous gnathostomiasis in Henan Province, China, based on the past history (eating undercooked eels), clinical manifestations (migratory subcutaneous nodule and persistent eosinophilia), and a serological finding (positive for specific anti-Gnathostoma antibodies).  相似文献   

12.
Anti-Neospora caninum antibody was detected in anti-Toxoplasma gondii positive and negative human sera by ELISA, western blot and immunofluorescence assay (IFA). Twelve cases out of 172 (6.7%) Toxoplasma-positive sera cross-reacted with both T. gondii and N. caninum antigens, and one out of 110 Toxoplasma-negative sera reacted with N. caninum antigen by ELISA. By western blot, all 12 sera reacted with T. gondii antigens with various banding patterns but specifically at 30 kDa (SAG1) and 22 kDa (SAG2) bands. With N. caninum antigen, the number of reactive bands was reduced, however a 43 kDa band reacted in three cases in Toxoplasma-positive sera in addition to one in Toxoplasma-negative control sera. All sera of the Toxoplasma-positive group labeled surface membrane of T. gondii, but reacted differently with N. caninum. Fluorescence was detected in surface membrane, subcellular organelles, or both in N. caninum. And one case in the Toxoplasma-negative group also reacted with N. caninum strongly in subcellular organelles. This suggested that the antibody against N. caninum may be present in human sera although the positive rate was very low in this study. The possibility of human infection with N. caninum remains to be evaluated further.  相似文献   

13.
Domesticated dogs are an important potential source of Echinococcus multilocularis infection in humans; therefore, new molecular approaches for the prevention of the parasite infection in dogs need to be developed. Here, we identified and characterized an immunogenic protein of the parasite by using a proteome-based approach. The total protein extracted from protoscoleces was subjected to two-dimensional Western blotting with sera from dogs experimentally infected with E. multilocularis. Two protein spots showed major reactivity to the sera from infected dogs. The N-terminal amino acid sequences of these spots were identical to the deduced amino acid sequence of the product of the putative hsp20 gene. RT-PCR and Western blot analyses revealed that the putative hsp20 gene and its products were expressed in almost all stages of the parasite life cycle. Furthermore, recombinant hsp20 showed specific reactivity to the sera from infected dogs, suggesting that this molecule may facilitate the development of a practical vaccine.  相似文献   

14.
15.
16.
17.
18.
The increase in human babesiosis is of major concern to health authorities. In the USA, most of these cases are due to infections with Babesia microti, whereas in Europe B. divergens is the major cause of clinical disease in humans. Here we review the immunological and biological literature of glycosylphosphatidylinositol (GPI)-anchored merozoite proteins of human Babesia parasites with emphasis on their role in immunity, and provide some new bioinformatical information on B. microti GPI-Anchored Proteins (GPI-AP). Cattle can be vaccinated with soluble parasite antigens (SPA) of Babesia divergens that are released by the parasite during proliferation. The major component in SPA preparations appeared to be a 37?kDa merozoite surface protein that is anchored in the merozoite membrane by a GPI anchor. Animals could be protected by vaccination with the recombinant 37?kDa protein expressed in Escherichia coli, provided the protein had a hydrophobic terminal sequence. Based on this knowledge, a recombinant vaccine was developed against Babesia canis infection in dogs, successfully. In order to identify similar GPI-AP in B. microti, the genome was analysed. Here it is shown that B. microti encodes all proteins necessary for GPI assembly and its subsequent protein transfer. In addition, in total 21 genes encoding for GPI-AP were detected, some of which reacted particularly strongly with sera from B. microti-infected human patients. Reactivity of antibodies with GPI-anchored merozoite proteins appears to be dependent on the structural conformation of the molecule. It is suggested that the three-dimensional structure of the protein that is anchored in the membrane is different from that of the protein that has been shed from the merozoite surface. The significance of this protein’s dynamics in parasite biology and immune evasion is discussed. Finally, we discuss developments in tick and Babesia vaccine research, and the role such vaccines could play in the control of human babesiosis.  相似文献   

19.
In this study, for the first time, the evaluation of Toxoplasma gondii full-length recombinant GRA5 antigen for the serodiagnosis of human toxoplasmosis is shown. The recombinant GRA5 antigen as a fusion protein containing His-tag at both terminals was obtained using an Escherichia coli expression system. The usefulness of rGRA5 for the diagnosis of toxoplasmosis in an ELISA was tested on a total of 189 sera from patients with different stages of the infection and 31 sera from sero-negative individuals, obtained during routine diagnostic tests. Anti-GRA5 IgG antibodies were detected in 70.9% of all seropositive serum samples. This result was comparable to ELISA using a Toxoplasma lysate antigen (TLA) and six combinations of recombinant antigens. The sensitivity of IgG ELISA calculated from all positive serum samples was similar for TLA (94.2%), rMAG1 + rSAG1 + rGRA5 (92.6%), rGRA2 + rSAG1 + rGRA5 (93.1%) and rROP1 + rSAG1 + rGRA5 (94.2%) cocktails, whereas the sensitivity of cocktails without rGRA5 antigens was lower giving 82.0%, 86.2% and 87.8%, respectively. Thus, the present study showed that the full-length rGRA5 is suitable for use as a component of an antigen cocktail for the detection of anti-T. gondii IgG antibodies.  相似文献   

20.
The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, β-1,4-galactosyltransferase-7 (β4Gal-T7), in E. coli. The enzyme β4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, β4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6× His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-β4Gal-T7 fusion protein, the unique protease cleavage site allows the protein β4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded β4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号