首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tie-Zhong Cui 《FEBS letters》2010,584(4):652-873
The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosaccharomyces pombe and in humans). We found that expression of either dlp1 or dps1 recovered the thermo-sensitive growth of an E. coli ispBR321A mutant and restored IspB activity and production of Coenzyme Q-8. IspB interacted with Dlp1 (or Dps1), forming a high-molecular weight complex that stabilized IspB, leading to full functionality.

Structured summary:

MINT-7385426:Dlp1 (uniprotkb:Q86YH6) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385083, MINT-7385058:IspB (uniprotkb:P0AD57) and IspB (uniprotkb:P0AD57) bind (MI:0407) by blue native page (MI:0276)MINT-7385413:Dlp1 (uniprotkb:O13851) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385024:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dps1 (uniprotkb:O43091) by pull down (MI:0096)MINT-7385041:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dlp1 (uniprotkb:O13851) by pull down (MI:0096)MINT-7385388:IspB (uniprotkb:P0AD57) and Dps1 (uniprotkb:O43091) physically interact (MI:0915) by blue native page (MI:0276)  相似文献   

2.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

3.
Sergio P. Acebrón 《FEBS letters》2009,583(18):2991-2996
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (Kd = 5-10 μM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.

Structured summary

MINT-7258957: G6PDH (uniprotkb:P0AC53) and G6PDH (uniprotkb:P0AC53) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258951: alpha glucosidase (uniprotkb:P21517) and alpha glucosidase (uniprotkb:P21517) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258903: AdhE (uniprotkb:P0A9Q7) and AdhE (uniprotkb:P0A9Q7) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258900: G6PDH (uniprotkb:P0AC53) and G6PDH (uniprotkb:P0AC53) bind (MI:0407) by biophysical (MI:0013)MINT-7258974: DnaK (uniprotkb:P0A6Y8), ClpB (uniprotkb:P63284), DnaJ (uniprotkb:P08622) and G6PDH (uniprotkb:P0AC53) physically interact (MI:0914) by cosedimentation (MI:0027)  相似文献   

4.
Small heat shock proteins (sHsps) associate with aggregated proteins, changing their physical properties in such a way that chaperone mediated disaggregation becomes much more efficient. In Escherichia coli two small Hsps, IbpA and IbpB, exist. They are 48% identical at the amino acid level, yet their roles in stabilisation of protein aggregates are quite distinct. Here we analysed the biochemical properties of IbpA. We found that IbpA assembles into protofilaments which in turn form mature fibrils. Such fibrils are atypical for sHsps. Interaction of IbpA with either its cochaperone IbpB or an aggregated substrate blocks IbpA fibril formation.

Structured summary

MINT-7876715: ibpA (uniprotkb:P0C054) and ibpA (uniprotkb:P0C054) bind (MI:0407) by molecular sieving (MI:0071)MINT-7888427: ibpB (uniprotkb:P0C058) and ibpB (uniprotkb:P0C058) bind (MI:0407) by molecular sieving (MI:0071)MINT-7888448: ibpA (uniprotkb:P0C054) and ibpA (uniprotkb:P0C054) bind (MI:0407) by electron microscopy (MI:0040)MINT-7888434: ibpB (uniprotkb:P0C058) and ibpB (uniprotkb:P0C058) bind (MI:0407) by electron microscopy (MI:0040)MINT-7888459: ibpA (uniprotkb:P0C054) and ibpA (uniprotkb:P0C054) bind (MI:0407) by fluorescence microscopy (MI:0416)  相似文献   

5.
We show that the monomeric form of Shigella IpaH9.8 E3 ligase catalyses the ubiquitination of human U2AF35 in vitro, providing a molecular mechanism for the observed in vivo effect. We further discover that under non-reducing conditions IpaH9.8 undergoes a domain swap driven by the formation of a disulfide bridge involving the catalytic cysteine and that this dimer is unable to catalyse the ubiquitination of U2AF35. The crystal structure of the domain-swapped dimer is presented. The redox inactivation of IpaH9.8 could be a mechanism of regulating the activity of the IpaH9.8 E3 ligase in response to cell damage so that the host cell in which the bacteria resides is maintained in a benign state suitable for bacterial survival.

Structured summary

MINT-7993779: ipaH9.8 (uniprotkb:Q8VSC3) and ipaH9.8 (uniprotkb:Q8VSC3) bind (MI:0408) by X-ray crystallography (MI:0114) MINT-7993812: ipaH9.8 (uniprotkb:Q8VSC3) and ipaH9.8 (uniprotkb:Q8VSC3) bind (MI:0407) by affinity chromatography technology (MI:0004) MINT-7993790: ipaH9.8 (uniprotkb:Q8VSC3) and ipaH9.8 (uniprotkb:Q8VSC3) bind (MI:0407) by blue native page (MI:0276)  相似文献   

6.
Ken Okada 《FEBS letters》2009,583(8):1251-5065
The HO1 and PcyA genes, encoding heme oxygenase-1 (HO1) and phycocyanobilin (PCB):ferredoxin (Fd) oxidoreductase (PcyA), respectively, are required for chromophore synthesis in photosynthetic light-harvesting complexes, photoreceptors, and circadian clocks. In the PCB biosynthetic pathway, heme first undergoes cleavage to form biliverdin. I confirmed that Fd1 induced the formation of a stable and functional HO1 complex by the gel mobility shift assay. Furthermore, analysis by a chemical cross-linking technique designed to detect protein-protein interactions revealed that HO1 and PcyA directly interact with Fd in a 1:2 ratio. Thus, Fd1, a one-electron carrier protein in photosynthesis, drives the phycobilin biosynthetic pathway.

Structured summary

MINT-7014657: Fd1 (uniprotkb:P0A3C9) and HO1 (uniprotkb:Q8DLW1) bind (MI:0407) by comigration in non-denaturing gel electrophoresis (MI:0404)MINT-7014666: HO1 (uniprotkb:Q8DLW1 and Fd1 (uniprotkb:P0A3C9) bind (MI:0407) by cross-linking studies (MI:0030)MINT-7014675: PcyA (uniprotkb:P59288) and Fd1 (uniprotkb:P0A3C9) bind (MI:0407) by cross-linking studies (MI:0030)  相似文献   

7.
Serpins are a superfamily of structurally conserved proteins. Inhibitory serpins use a suicide substrate-like mechanism. Some are able to inhibit cysteine proteases in cross-class inhibition. Here, we demonstrate for the first time the strong inhibition of initiator and effector caspases 3 and 8 by two purified bovine SERPINA3s. SERPINA 3-1 (uniprotkb:Q9TTE1) binds tighly to human CASP3 (uniprotkb:P42574) and CASP8 (uniprotkb:Q14790) with kass of 4.2 × 105 and 1.4 × 106 M−1 s−1, respectively. A wholly similar inhibition of human CASP3 and CASP8 by SERPINA3-3 (uniprotkb:Q3ZEJ6) was also observed with kass of 1.5 × 105 and 2.7 × 106 M−1 s−1, respectively and form SDS-stable complexes with both caspases. By site-directed mutagenesis of bovSERPINA3-3, we identified Asp371 as the potential P1 residue for caspases. The ability of other members of this family to inhibit trypsin and caspases was analysed and discussed.

Structured summary

MINT-7234656: CASP8 (uniprotkb:Q14790) and SERPINA3-1 (uniprotkb:Q9TTE1) bind (MI:0407) by biochemical (MI:0401)MINT-7234634: SERPINA3-3 (uniprotkb:Q3ZEJ6) and CASP3 (uniprotkb:P42574) bind (MI:0407) by biochemical (MI:0401)MINT-7234663: CASP8 (uniprotkb:Q14790) and SERPINA3-3 (uniprotkb:Q3ZEJ6) bind (MI:0407) by biochemical (MI:0401)MINT-7234625: SERPINA3-1 (uniprotkb:Q9TTE1) and CASP3 (uniprotkb:P42574) bind (MI:0407) by biochemical (MI:0401)  相似文献   

8.
Calmodulin(CaM)-regulated protein phosphorylation forms an important component of Ca2+ signaling in animals but is less understood in plants. We have identified a CaM-binding receptor-like kinase from soybean nodules, GmCaMK1, a homolog of Arabidopsis CRLK1. We delineated the CaM-binding domain (CaMBD) of GmCaMK1 to a 24-residue region near the C-terminus, which overlaps with the kinase domain. We have demonstrated that GmCaMK1 binds CaM with high affinity in a Ca2+-dependent manner. We showed that GmCaMK1 is expressed broadly across tissues and is enriched in roots and developing nodules. Finally, we examined the CaMBDs of the five-member GmCaMK family in soybean, and orthologs present across taxa.

Structured summary

MINT-8051564: AtCRLK2 (uniprotkb:Q9LFV3) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051416: GmCaMK3 (uniprotkb:C6ZRS6) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051258: CaM (uniprotkb:P62199) and GmCaMK1 (genbank_protein_gi:223452504) bind (MI:0407) by isothermal titration calorimetry (MI:0065)MINT-8051400: GmCaMK2 (uniprotkb: C6ZRY5) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051242, MINT-8051295, MINT-8051313, MINT-8051327, MINT-8051341, MINT-8051355: GmCaMK1 (genbank_protein_gi:223452504) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051467: GmCaMK4 (uniprotkb: C6TIQ0) binds (MI:0407) to CaM (uniprotkb:P62199) by filter binding (MI:0049)MINT-8051276: CaM (uniprotkb:P62199) and GmCaMK1 (genbank_protein_gi:223452504) bind (MI:0407) by comigration in non denaturing gel electrophoresis (MI:0404)MINT-8051374: CaM (uniprotkb:P62199) and GmCaMK1 (genbank_protein_gi:223452504) bind (MI:0407) by mass spectrometry studies of complexes (MI:0069)  相似文献   

9.
Thomas Lehmann 《FEBS letters》2009,583(12):1895-1900
Full-length tyrosine decarboxylase cDNA (TyrDC) from Arabidopsis thaliana was identified by rapid amplification of cDNA ends-PCR and isolated by RT-PCR. The TyrDC mRNA was substantially induced by drought stress and wounding, and was considerably decreased by salt stress. By using TyrDC protein fusions with green fluorescent protein, an intracellular localization to the cytoplasm was shown. Recombinant (His)6-TyrDC was expressed in Escherichia coli and enzymatically characterized: it exclusively catalyzed the conversion of l-tyrosine to tyramine, exhibited an optimum temperature of 50 °C, and an optimum pH at approximately 8.5-9. Recombinant TyrDC protein formed tetramers, as shown by blue native gel electrophoresis.

Structured summary

MINT-7040408:TyrDC (uniprotkb:Q8RY79) and TyrDC (uniprotkb:Q8RY79) bind (MI:0407) by blue native page (MI:0276)  相似文献   

10.
Serine residues phosphorylated by protein kinase A (PKA) in the shortest isoform of human tau protein (τ3) were sequentially replaced by alanine and interaction of phosphorylated τ3 and its mutants with 14-3-3 was investigated. Mutation S156A slightly decreased interaction of phosphorylated τ3 with 14-3-3. Double mutations S156A/S267A and especially S156A/S235A, strongly inhibited interaction of phosphorylated τ3 with 14-3-3. Thus, two sites located in the Pro-rich region and in the pseudo repeats of τ3 are involved in phosphorylation-dependent interaction of τ3 with 14-3-3. The state of τ3 phosphorylation affects the mode of 14-3-3 binding and by this means might modify tau filament formation.

Structured summary

MINT-7233358, MINT-7233372, MINT-7233384: 14-3-3 zeta (uniprotkb:P63104) and Tau 3 (uniprotkb:P10636-3) bind (MI:0407) by molecular sieving (MI:0071)MINT-7233323, MINT-7233334, MINT-7233346: Tau 3 (uniprotkb:P10636-3) and 14-3-3 zeta (uniprotkb:P63104) bind (MI:0407) by crosslinking studies (MI:0030)MINT-7233285, MINT-7233297, MINT-7233310: 14-3-3 zeta (uniprotkb:P63104) and Tau 3 (uniprotkb:P10636-3) bind (MI:0407) by comigration in non-denaturing gel electrophoresis (MI:0404)  相似文献   

11.
Most organisms synthesise the B6 vitamer pyridoxal 5-phosphate (PLP) via the glutamine amidotransferase PLP synthase, a large enzyme complex of 12 Pdx1 synthase subunits with up to 12 Pdx2 glutaminase subunits attached. Deletion analysis revealed that the C-terminus has four distinct functionalities: assembly of the Pdx1 monomers, binding of the pentose substrate (ribose 5-phosphate), formation of the reaction intermediate I320, and finally PLP synthesis. Deletions of distinct C-terminal regions distinguish between these individual functions. PLP formation is the only function that is conferred to the enzyme by the C-terminus acting in trans, explaining the cooperative nature of the complex.

Structured summary

MINT-7994448: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by molecular sieving (MI:0071)MINT-7994425, MINT-7994413, MINT-7994435: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by cosedimentation in solution (MI:0028).  相似文献   

12.
The universal enzymatic cofactor vitamin B6 can be synthesized as pyridoxal 5-phosphate (PLP) by the glutamine amidotransferase Pdx1. We show that Saccharomyces cerevisiae Pdx1 is hexameric by analytical ultracentrifugation and by crystallographic 3D structure determination. Bacterial homologues were previously reported to exist in hexamer:dodecamer equilibrium. A small sequence insertion found in yeast Pdx1 elevates the dodecamer dissociation constant when introduced into Bacillus subtilis Pdx1. Further, we demonstrate that the yeast Pdx1 C-terminus contacts an adjacent subunit, and deletion of this segment decreases enzymatic activity 3.5-fold, suggesting a role in catalysis.

Structured summary

MINT-7147859: PDX1 (uniprotkb:P16451) and PDX1 (uniprotkb:P16451) bind (MI:0407) by cosedimentation in solution (MI:0028)MINT-7147899: PDX1 (uniprotkb:P37528) and PDX1 (uniprotkb:P37528) bind (MI:0407) by cosedimentation in solution (MI:0028)  相似文献   

13.
Macropinocytosis is regulated by Abl kinase via an unknown mechanism. We previously demonstrated that Abl kinase activity is, itself, regulated by Abi1 subsequent to Abl kinase phosphorylation of Abi1 tyrosine 213 (pY213) [1]. Here we show that blocking phosphorylation of Y213 abrogated the ability of Abl to regulate macropinocytosis, implicating Abi1 pY213 as a key regulator of macropinocytosis. Results from screening the human SH2 domain library and mapping the interaction site between Abi1 and the p85 regulatory domain of PI-3 kinase, coupled with data from cells transfected with loss-of-function p85 mutants, support the hypothesis that macropinocytosis is regulated by interactions between Abi1 pY213 and the C-terminal SH2 domain of p85—thereby linking Abl kinase signaling to p85-dependent regulation of macropinocytosis.

Structured summary

MINT-7908602: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHIP2 (uniprotkb:O15357) by array technology (MI:0008)MINT-7908362: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Emt (uniprotkb:Q08881) by array technology (MI:0008)MINT-7908235: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lyn (uniprotkb:P07948) by array technology (MI:0008)MINT-7908075: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to Fgr (uniprotkb:P09769) by array technology (MI:0008)MINT-7908330, MINT-7908522: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav1 (uniprotkb:P15498) by array technology (MI:0008)MINT-7907962: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fyn (uniprotkb:P06241) by array technology (MI:0008)MINT-7908203: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P12931) by array technology (MI:0008)MINT-7908570: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHP-2 (uniprotkb:P35235) by array technology (MI:0008)MINT-7908187, MINT-7908586: Abi1(uniprotkb:Q8IZP0) binds (MI:0407) to Gap (uniprotkb:P20936) by array technology (MI:0008)MINT-7907981, MINT-7907995: Abi1 (uniprotkb:Q8IZP0) physically interacts (MI:0915) with p85a (uniprotkb:P26450) by anti tag coimmunoprecipitation (MI:0007)MINT-7908251: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P19174) by array technology (MI:0008)MINT-7908346: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Grb2 (uniprotkb:P62993) by array technology (MI:0008)MINT-7907945: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Abl (uniprotkb:P00519) by array technology (MI:0008)MINT-7908474: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to p85b (uniprotkb:O00459) by array technology (MI:0008)MINT-7908107: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Hck (uniprotkb:P08631) by array technology (MI:0008)MINT-7908011: p85a (uniprotkb:P26450) physically interacts (MI:0915) with Abi1 (uniprotkb:Q8IZP0) by pull down (MI:0096)MINT-7908155: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to FynT (uniprotkb:P06241-2) by array technology (MI:0008)MINT-7908283, MINT-7908490: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p55g (uniprotkb:Q92569) by array technology (MI:0008)MINT-7907929, MINT-7907815, MINT-7907832, MINT-7907865, MINT-7907897, MINT-7907913, MINT-7907881, MINT-7907848: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p85a (uniprotkb:P27986) by array technology (MI:0008)MINT-7908059: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Frk (uniprotkb:P42685) by array technology (MI:0008)MINT-7908378: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblC (uniprotkb:Q9ULV8) by array technology (MI:0008)MINT-7908618: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblA (uniprotkb:B5MC15) by array technology (MI:0008)MINT-7908139, MINT-7908538: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Nap4 (uniprotkb:O14512) by array technology (MI:0008)MINT-7908426: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblB (uniprotkb:Q13191) by array technology (MI:0008)MINT-7908506: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Crk (uniprotkb:P46108) by array technology (MI:0008)MINT-7908554: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mAbl (uniprotkb:P00520) by array technology (MI:0008)MINT-7908043, MINT-7908394: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav2 (uniprotkb:P52735) by array technology (MI:0008)MINT-7908458: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mSck/ShcB (uniprotkb:Q8BMC3) by array technology (MI:0008)MINT-7908091: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Yes (uniprotkb:P07947) by array technology (MI:0008)MINT-7908219: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P00523) by array technology (MI:0008)MINT-7908123: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fer (uniprotkb:P16591) by array technology (MI:0008)MINT-7908410: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CrkL (uniprotkb:P46109) by array technology (MI:0008)MINT-7908314, MINT-7908442: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Arg (uniprotkb:P42684) by array technology (MI:0008)MINT-7908299: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P10686) by array technology (MI:0008)MINT-7908171: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fes (uniprotkb:P07332) by array technology (MI:0008)MINT-7908027: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lck (uniprotkb:P06239) by array technology (MI:0008)  相似文献   

14.
Hitomi Katsura 《FEBS letters》2009,583(3):526-3395
Oligomeric structures of the four LOV domains in Arabidopsis phototropin1 (phot1) and 2 (phot2) were studied using crosslinking. Both LOV1 domains of phot1 and phot2 form a dimer independently on the light conditions, suggesting that the LOV1 domain can be a stable dimerization site of phot in vivo. In contrast, phot1-LOV2 is in a monomer-dimer equilibrium and phot2-LOV2 exists as a monomer in the dark. Blue light-induced a slight increase in the monomer population in phot1-LOV2, suggesting a possible blue light-inducible dissociation of dimers. Furthermore, blue light caused a band shift of the phot2-LOV2 monomer. CD spectra revealed the unfolding of helices and the formation of strand structures. Both light-induced changes were reversible in the dark.

Structured summary

MINT-6823377, MINT-6823391:PHOT1 (uniprotkb:O48963) and PHOT1 (uniprotkb: O48963) bind (MI:0407) by cross-linking studies (MI:0030)MINT-6823495, MINT-6823508:PHOT2 (uniprotkb:P93025) and PHOT2 (uniprotkb:P93025) bind (MI:0407) by cross-linking studies (MI:0030)  相似文献   

15.
Although the precise intracellular roles of S100 proteins are not fully understood, these proteins are thought to be involved in Ca2+-dependent diverse signal transduction pathways. In this report, we identified importin α as a novel target of S100A6. Importin α contains armadillo repeats, essential for binding to nuclear localization signals. Based on the results from GST pull-down assay, gel-shift assay, and co-immunoprecipitation, we demonstrated that S100A6 specifically interacts with the armadillo repeats of importin α in a Ca2+-dependent manner, resulting in inhibition of the nuclear localization signal (NLS)-importin α complex formation in vitro and in vivo. These results indicate S100A6 may regulate the nuclear transport of NLS-cargos in response to increasing concentrations of intracellular Ca2+.

Structured summary

MINT-8045244: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8044928: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044941: Importin alpha (uniprotkb:P52292) and S100A6 (uniprotkb:P06703) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)MINT-8044997: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by anti bait coimmunoprecipitation (MI:0006)MINT-8045031: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044917: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045257: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8045015: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045267: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) and npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8045316: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) by pull down (MI:0096)MINT-8045302: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with NPM1 (uniprotkb:P06748) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045290: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8044963, MINT-8044985: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by anti bait coimmunoprecipitation (MI:0006)MINT-8044951: Importin alpha (uniprotkb:P52292) and S100A2 (uniprotkb:P29034) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)  相似文献   

16.
Colicin A enters Escherichia coli cells through interaction with endogenous TolA and TolB proteins. In vitro, binding of the colicin A translocation domain to TolA leads to unfolding of TolA. Through NMR studies of the colicin A translocation domain and polypeptides representing the individual TolA and TolB binding epitopes of colicin A we question if the unfolding of TolA induced by colicin A is likely to be physiologically relevant. The NMR data further reveals that the colicin A binding site on TolA is different from that for colicin N which explains why there is a difference in colicin toxicity for E. coli carrying a TolA-III homologue from Yersina enterocolitica in place of its own TolA-III.

Structured summary

MINT-7888512: TolA (uniprotkb:P19934) and Col-A (uniprotkb:P04480) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888526: TolA (uniprotkb:P19934) and TolB (uniprotkb:P0A857) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888999: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by molecular sieving (MI:0071)MINT-7888982: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

17.
Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin. For the first time, we directly observed functional SH protein using electron microscopy, which revealed SH forms multimeric ring-like objects with a prominent central stained region. Based on current and existing functional data, we propose this region represents the channel that mediates membrane permeability.

Structured summary

MINT-7890792, MINT-7890805: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by chromatography technology (MI:0091)MINT-7890784, MINT-7890776: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by electron microscopy (MI:0040)  相似文献   

18.
Calmodulin-regulated protein phosphorylation plays a pivotal role in amplifying and diversifying the action of calcium ion. In this study, we identified a calmodulin-binding receptor-like protein kinase (CBRLK1) that was classified into an S-locus RLK family. The plasma membrane localization was determined by the localization of CBRLK1 tagged with a green fluorescence protein. Calmodulin bound specifically to a Ca2+-dependent calmodulin binding domain in the C-terminus of CBRLK1. The bacterially expressed CBRLK1 kinase domain could autophosphorylate and phosphorylates general kinase substrates, such as myelin basic proteins. The autophosphorylation sites of CBRLK1 were identified by mass spectrometric analysis of phosphopeptides.

Structured summary

MINT-6800947:CBRLK1 (uniprotkb:Q9ZT06) and AtCaM2 (uniprotkb:P25069) bind (MI:0407) by electrophoretic mobility shift assay (MI:0413)MINT-6800966:AtCaM2 (uniprotkb:P25069) and CBRLK1 (uniprotkb:Q9ZT06) bind (MI:0407) by competition binding (MI:0405)MINT-6800930:CBRLK1 (uniprotkb:Q9ZT06) binds (MI:0407) to AtCaM2 (uniprotkb:P25069) by far Western blotting (MI:0047)MINT-6800978:AtCaM2 (uniprotkb:P25069) physically interacts (MI:0218) with CBRLK1 (uniprotkb:Q9ZT06) by cytoplasmic complementation assay (MI:0228)  相似文献   

19.
p47, a p97-binding protein, functions in Golgi membrane fusion together with p97 and VCIP135, another p97-binding protein. We have succeeded in creating p47 with a point mutation, F253S, which lacks p97-binding affinity. p47 mapping experiments revealed that p47 had two p97-binding regions and the F253S mutation occurred in the first p97-binding site. p47(F253S) could not form a complex with p97 and did not caused any cisternal regrowth in an in vitro Golgi reassembly assay. In addition, mutation corresponding to the p47 F253S mutation in p37 and ufd1 also abolished their binding ability to p97.

Structured summary

MINT-7987189, MINT-7987207, MINT-7987303: p47 (uniprotkb:O35987) binds (MI:0407) to p97 (uniprotkb:Q01853) by pull down (MI:0096)MINT-7987226: p97 (uniprotkb:P46462) binds (MI:0407) to p47 (uniprotkb:O35987) by pull down (MI:0096)MINT-7987348: p97 (uniprotkb:P46462) physically interacts (MI:0915) with Ufd1 (uniprotkb:P70362) by pull down (MI:0096)MINT-7987264: p97 (uniprotkb:P46462) and p47 (uniprotkb:O35987) bind (MI:0407) by competition binding (MI:0405)MINT-7987326: p97 (uniprotkb:P46462) binds (MI:0407) to p37 (uniprotkb:Q0KL01) by pull down (MI:0096)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号