首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors governing the pattern formation process in the early morphogenesis of a marine colonial hydroid, Dynamena pumila, have been studied. Two different types of morphogenesis have been distinguished. Morphogenesis of the first type goes on via changes in cell shape and cell axis orientation, while morphogenesis of the second type is based upon the active coordinated cell movements associated with cell rearrangements. It was shown that morphogenesis of both types can be considered as cascades in which any event is a consequence of the previous one. The spatial structure of each developmental stage contains information about the direction and the initial conditions of further morphogenesis. So, an "epigenetic program" of morphogenesis gradually originates in the course of development and provides the stable reproduction of spatial structures. It is reasonable to consider the activity of epigenetic factors guiding Dynamena morphogenesis (geometry/topology of an embryo, heterogeneity of an embryo spatial structure, configuration of the field of mechanical stresses of the embryo surface) as "morphomechanical programming" of morphogenesis.  相似文献   

2.
Eight synthetic analogs of the mating pheromone alpha-factor-induced morphogenesis and increased agglutinability in a cells. Most analogs induced increased agglutinability at lower concentrations than those at which they induced morphogenesis, but the ratio of the potencies for the two effects varied 140-fold among different analogs. Morphological response to pheromone required exposure for at least 90 min, but increased agglutinability followed exposures of 20 s. Two synthetic analogs induced neither response. In competition experiments, both of these analogs prevented induction of increased agglutinability and morphogenesis by active alpha factor. The inactive peptides blocked increased agglutinability at lower concentrations than those at which they blocked morphogenesis. alpha factors exhibited different structure-function relationships for morphogenesis as compared with agglutinability. Thus, response of Saccharomyces cerevisiae to alpha factor is complex and may be mediated by more than one receptor.  相似文献   

3.
In organ cultures of lung rudiments from 11-day mouse embryos, it was found that addition of sucrose to the culture medium stimulated branching morphogenesis and reduced lumen distension. Two possible roles of sucrose were postulated: one as a nutrient and another as a generator of osmotic pressure inducing osmosis of water from the lumen fluid to the culture medium across a simple columnar epithelial cell layer. To assess which was the case, branching morphogenesis was investigated in lung rudiments cultured in medium in which osmotic pressure was increased by the addition of lactose or NaCl rather than sucrose: similar acceleration of branching was observed in both. In another experiment, lumen fluid of cultured lung rudiments was mechanically drained each day, and significantly stimulated branching morphogenesis was observed even when sucrose was not added to the culture medium. Heparin is known to induce abnormal lumen distension and inhibits branching morphogenesis. Heparin-induced abnormal morphogenesis was prevented either by the addition of sucrose to the culture medium or by the mechanical drainage of lumen fluid. These results suggest that lumen distension caused by the accumulation of lumen fluid disrupts lung branching morphogenesis in vitro, even when the mechanism of branching morphogenesis is intact.  相似文献   

4.
Mineral nutrition and plant morphogenesis   总被引:9,自引:0,他引:9  
Summary Plant morphogenesis in vitro can be achieved via two pathways, somatic embryogenesis or organogenesis. Relationships between the culture medium and explant leading to morphogenesis are complex and, despite extensive study, remain poorly understood. Primarily the composition and ratio of plant growth regulators are manipulated to optimize the quality and numbers of embryos or organs initiated. However, many species and varieties do not respond to this classical approach and require further optimization by the variation of other chemical or physical factors. Mineral nutrients form a significant component of culture media but are often overlooked as possible morphogenic elicitors. The combination of minerals for a particular plant species and developmental pathway are usually determined by the empirical manipulation of one or a combination of existing published formulations. Often only one medium type is used for the duration of culture even though this formulation may not be optimal for the different stages of explant growth and development. Furthermore, mineral studies have often focused on growth rather than morphogenesis with very little known of the relationships between mineral uptake and morphogenesis. This article examines the present knowledge of the main effects that mineral nutrients have on plant morphogenesis in vitro. In particular, the dynamics of nitrogen, phosphorus, and calcium supply during development are discussed.  相似文献   

5.
Four types of morphogenesis of the dermal skeleton can be distinguished. They differ with regard to scale growth, scale replacement and insertion of new scales during ontogeny. Three of the types occur exclusively in fossil sharks and have been found in only a few articulate specimens. In only one case (Jurassic hybodontids) it is possible to trace the phyletic transition from one type to another. The adaptive significance, both of different types of morphogenesis of the dermal skeleton as well as different types of scale shapes, is discussed.  相似文献   

6.
Epithelial morphogenesis.   总被引:29,自引:0,他引:29  
B M Gumbiner 《Cell》1992,69(3):385-387
The identification of protein factors, such as epimorphin, scatter factor, and activin, that induce epithelial branching and convergent extension-like movements in embryonic tissues are important breakthroughs in our understanding of the role of mesenchyme in epithelial morphogenesis. Moreover, the development of simple in vitro epithelial cell systems that undergo morphogenesis in response to these factors should provide a means to investigate the cellular and molecular bases of the morphogenetic movements themselves. Although many different cellular processes are involved in such morphogenetic behaviors, cell rearrangement is a particularly intriguing one that will be important to study further. Several considerations lead to the prediction that a dynamic regulation of cell-cell adhesion is likely to play a central role in cell rearrangements and epithelial morphogenesis. Ultimately, a greater issue to be addressed is how the different cellular mechanisms participating in epithelial morphogenesis are coordinated and regulated, so as to generate the diverse patterns found in various epithelia.  相似文献   

7.
D. F. Eberl  A. J. Hilliker 《Genetics》1988,118(1):109-120
This study attempted to assay the zygotic contribution of X chromosome genes to the genetic control of embryonic morphogenesis in Drosophila melanogaster. A systematic screen for X-linked genes which affect the morphology of the embryo was undertaken, employing the phenotype of whole mount embryos as the major screening criterion. Of 800 EMS-induced lethal mutations analyzed, only 14% were embryonic lethal, and of these only a minority affected embryonic morphogenesis. By recombination and complementation analyses, the mutations that affected embryonic morphogenesis were sequestered into 26 complementation groups. Fourteen of the loci correspond to genes previously identified in a large-scale screen in which fixed cuticles were examined, and 12 new loci have been identified. Most of the mutations which disrupt embryonic morphology had specific and uniform mutant phenotypes. Mutations were recovered which disrupt major morphogenetic events such as gastrulation, germ band retraction and head involution. No mutations were found which arrest the embryos prior to blastoderm formation. However, a novel class was found, one comprised of mutations which interfere with the development of internal structures but not cuticular structures. Nevertheless, saturation of the X chromosome for genes important for embryonic morphogenesis is probably incomplete.  相似文献   

8.
To account for the differences between proters and opisthes with regard to extra cytoproct morphogenesis in Paramecium tetraurelia, two hypotheses have been proposed and tested. (i) The differences may be a result of different actions of proter-macronucleus and opisthe-macronucleus. This hypothesis has been tested by cytoplasmically connecting the proter with the opisthe in the form of chains, some of which have only one macronucleus per chain. However, the connected proters and opisthes remain different in extra cytoproct morphogenesis, thus arguing against the hypothesis. (ii) The differences may be a result of differences between the proter and the opisthe with regard to the development of their posterior-ventral cortex: proters have a newly-developed posterior-ventral cortex whereas opisthes receive the posterior-ventral cortex from the pre-fission mother animal. This hypothesis has been tested by surgically producing an opisthe with a newly-regenerated posterior cortex. Such opisthes, however, remain different from proters in extra cytoproct morphogenesis. Thus no direct support for the second hypothesis is obtained. Also, proter-opisthe difference in morphogenesis may be understood in terms of Wolpert's positional information hypothesis, by assuming that the anterior and posterior ends of a dividing animal serve as reference points for establishing a gradient and that positional information before separation of the two daughter animals leads to differences in extra cytoproct morphogenesis between them after separation.  相似文献   

9.
Vascular endothelial growth factor-A (VEGF-A) signaling directs both vasculogenesis and angiogenesis. However, the role of VEGF-A ligand signaling in the regulation of epithelial-mesenchymal interactions during early mouse lung morphogenesis remains incompletely characterized. Fetal liver kinase-1 (Flk-1) is a VEGF cognate receptor (VEGF-R2) expressed in the embryonic lung mesenchyme. VEGF-A, expressed in the epithelium, is a high affinity ligand for Flk-1. We have used both gain and loss of function approaches to investigate the role of this VEGF-A signaling pathway during lung morphogenesis. Herein, we demonstrate that exogenous VEGF 164, one of the 3 isoforms generated by alternative splicing of the Vegf-A gene, stimulates mouse embryonic lung branching morphogenesis in culture and increases the index of proliferation in both epithelium and mesenchyme. In addition, it induces differential gene and protein expression among several key lung morphogenetic genes, including up-regulation of BMP-4 and Sp-c expression as well as an increase in Flk-1-positive mesenchymal cells. Conversely, embryonic lung culture with an antisense oligodeoxynucleotide (ODN) to the Flk-1 receptor led to reduced epithelial branching, decreased epithelial and mesenchymal proliferation index as well as downregulating BMP-4 expression. These results demonstrate that the VEGF pathway is involved in driving epithelial to endothelial crosstalk in embryonic mouse lung morphogenesis.  相似文献   

10.
We know organisms first of all by their forms. Rabbit and carrot, Neurospora, and Paramecium represent particular shapes and structures, patterns in space and time. Each pattern integrates innumerable molecules into a coherent whole, reproduces itself from one generation to the next, and may persist in this manner for millions of years. In this lecture, I shall discuss efforts to render a dynamic and causal account of biological morphogenesis, using fungal hyphae as a concrete exemplar. Molecular structures and interactions are necessary but not sufficient to specify patterns on a scale three to five orders of magnitude larger. The search for alternatives leads to the importation of the concept of dynamic fields, exemplified by the proposal of Bartnicki-Garcia and Gierz that apical growth and morphogenesis report the operation of a mobile vesicle-supply center. Application of field theories to biological morphogenesis is still at an early stage, but is necessary in order to resolve the paradoxical relationship between genes and form.  相似文献   

11.
12.
Development of spatial pattern and form is one of the central issues in embryology and is included under the general name of morphogenesis. Recently, many investigations have revealed how does development occurs by each embryonic stem cell or which Genes play a crucial role for morphogenesis. However, still fundamental question is unclear; such as how does each cell recognize spatial information or which kind of information guides each cell to the suitable place. Approximately, we have 6x10(13) cells in our body. If each frame of reference of each cell is included in the gene, gene must have included more than 6x10(13) of information to inform each cell where they are. We could simply suggest this kind of the idea is quite wrong because we know genes are few enough to include such informations. Recently, it has been suggested that interaction between intracellular and extracellular fiber play crucial roll for morphogenesis. The fibers inside cell are quite complicated but well organized the system, and fibers outside of the cell are comparatively very simple fiber. Each of the fibers is well studied, but quantitative investigation of their interaction is lacking although importance is suggested by many researchers. A major problem is lacking of new method or technique. In our topics, we would like to introduce how intracellular and extracellular fiber generate morphogenesis and how we could investigate them using new technique for tissue engineering, one of the promising field of applied cell biology.  相似文献   

13.
Journal of Plant Research - Light is one of the indispensable elements that plants need in order to grow and develop. In particular, it is essential for inducing morphogenesis, such as suppression...  相似文献   

14.
15.
16.
17.
18.
Morphogenesis is an old, and one of the latest, fascinating fields in biological science and a huge number of papers on molecular mechanisms underlying it have been published. But most of the works and reviews on these mechanisms pertain to molecules of, as it were, the planning or design of morphogenesis, such as morphogens and homeodomain proteins. In this review, I will describe the function of extracellular matrix (ECM) and other cell adhesion molecules in morphogenesis as that of actual morpho-creating molecules, morphocreators, and discuss their roles as positional information-pertaining molecules.  相似文献   

19.
The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis.  相似文献   

20.
In high density cultures of mouse fetal lung cells, so-called "mass cultures", development of organoid structures, formation of a basement membrane (BM), and differentiation of pneumocytes type II occur accompanied by synthesis and secretion of lamellar bodies. The relationship between the formation of a BM, on the one hand, and morphogenesis as well as differentiation of pneumocytes type II, on the other hand, has been investigated by use of antibodies against BM components in the lung mass culture. It is shown here that anti-laminin antibodies prevented BM formation, but morphogenesis and pneumocyte differentiation occurred as in untreated cultures. Short-term treatment with the antibody revealed that the BM is formed only during the first 2 to 3 days in vitro. Already formed BM could not be removed by anti-laminin. Anti-collagen type IV antibodies showed no effect in the lung mass culture except for a stronger staining of the BM. Anti-BM-1 antibodies caused no changes in morphogenesis, cell differentiation and BM formation either, but the mesenchymal intercellular space exhibited a dark staining, which is probably due to antigen-antibody complexes. The results obtained with anti-laminin antibodies indicate that a BM is not necessary for lung cell differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号