首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Phenobarbital-induced coumarin 7-hydroxylase is high in DBA/2J and low in C57BL/6N inbred mice; this genetic difference is encoded by the Coh locus on chromosome 7. The aim of this study was to develop an antibody specific for this cytochrome P-450 polymorphism. P-450 fractions, highly specific for phenobarbital-inducible coumarin 7-hydroxylase activity, were purified from DBA/2J and C57BL/6N mouse liver microsomes. Both proteins are 49 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Soret peaks of the reduced cytochrome . CO complexes are 451 nm. Reconstituted DBA/2J coumarin 7-hydroxylase activity exhibits a V twice as high as, and a Km value 10-fold less than, the reconstituted C57BL/6N activity. Antibodies were raised in rabbit. By Ouchterlony immunodiffusion, both antibodies show 100% cross-reactivity with DBA/2J and C57BL/6N microsomes and purified antigens. Yet, DBA/2J but not C57BL/6N 7-hydroxylase activity is inhibited by the antibody to DBA/2J P-450. Both DBA/2J and C57BL/6N activities are blocked by the antibody to C57BL/6N P-450. Neither antibody has any effect on liver microsomal d-benzphetamine N-demethylase, ethylmorphine N-demethylase, aminopyrine N-demethylase, 7-ethoxycoumarin O-deethylase, acetanilide 4-hydroxylase, or aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity. The DBA/2J protein most specific for phenobarbital-induced coumarin 7-hydroxylation is designated 'P-450Coh'. Anti-(P-450Coh) precipitates a relatively minor 49-kDa protein from detergent-solubilized microsomes and from in vitro translation of poly(A+)-enriched total RNA of phenobarbital-treated DBA/2J mouse liver, whereas the major phenobarbital-induced P-450 proteins exhibit a molecular mass of about 51 kDa. The immunoprecipitated translation products correspond to a messenger RNA of 2100 +/- 100 nucleotides.  相似文献   

2.
Using sucrose gradients, the Ah receptor and a 3-4S binding peak were measured in hepatic cytosol from Dub: ICR, C57BL/6, and DBA/2 male mice. Isosafrole, piperonyl butoxide, and 5-t-butyl-1,3-benzodioxole were unable to displace 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene from either the Ah receptor or the 3-4S binding peak, in vitro. In in vivo experiments, treatment of C57BL/6 mice with 3-methylcholanthrene caused a 4-fold reduction in Ah receptor binding 2 h after i.p. injection; whereas, isosafrole caused a 2-fold enhancement of the Ah receptor after 24 h. This increase in the Ah receptor binding following isosafrole treatment may be due to induction. 3-Methylcholanthrene treatment of C57BL/6 mice also caused a 3-fold reduction in the 3-4S binding peak 2 h after i.p. injection; isosafrole treatment had little or no effect on the 3-4S peak in C57BL/6 or DBA/2 mice. Both in vivo and in vitro data appear to demonstrate that there is no direct role for the Ah receptor or the 3-4S protein in the regulation of cytochrome P-450 by methylenedioxyphenyl compounds. Using Sephadex G-100 chromatography, a cytosolic protein fraction was obtained from C57BL/6 and Dub:ICR mice which was previously implicated by others as a carrier in the metabolism of benzo[a]pyrene (B[a]P). This fraction was applied to sucrose gradients and sedimented in the 3-4S region. Hence it appears that the 3-4S binding peak may be the carrier described by these workers.  相似文献   

3.
Eight methylenedioxyphenyl (MDP) compounds were examined for their ability to induce cytochrome P450 (P450) in mouse liver. Induction by safrole, isosafrole, and dihydrosafrole was studied in both C57BL/6N (Ah-responsive) and DBA/2N (Ahnonresponsive) male mice after IP administration of 200 mg/kg/day MDP compound for 3 days. Hepatic P450 content, ethylmorphine N-demethylase, ethoxy-resorufin O-deethylase, and acetanilide hydroxylase activities were induced to the same extent in both strains of mice. Benzo(a)pyrene hydroxylase activity, however, was not induced in either C57 or DBA mice. The similarity of results in both strains of mice indicated induction of these P450 isozymes by these three MDP compounds is not mediated by the Ah receptor. Induction of P450 by butylbenzodioxole (n-butyl-BD), tertiarybutylbenzodioxole (t-butyl-BD), methylbenzodioxole (methyl-BD), nitrobenzodioxole (nitro-BD), and bromobenzodioxole (bromo-BD) was examined only in C57BL/6N mice. Methyl-BD, nitro-BD, and bromo-BD did not induce hepatic microsomal proteins or selected P450 monooxygenase activities. In contrast, n-butyl-BD, and t-butyl-BD induced P450 content, ethylmorphine N-demethylase, acetanilide hydroxylase, and ethoxyresorufin O-deethylase activities. Benzo(a)pyrene hydroxylase was not induced by any of the treatments. Induction of these P450 activities is consistent with induction of P450 IIB1 and P450 IA2, but not induction of P450 IA1. Western blot analysis with antibodies to P450 isozymes induced with either phenobarbital (Pb) or 3-methylcholanthrene (3-MC) confirmed that both IIB1 and IA2 were induced, but that IA1 was not induced.  相似文献   

4.
R H Tukey  D W Nebert 《Biochemistry》1984,23(25):6003-6008
The Ah locus in the C57BL/6N mouse regulates at least two cytochrome P-450 gene products, termed in the mouse P1-450 and P3-450; these two enzymes are so named because each is responsible for the highest turnover number for the substrates benzo[a]pyrene and acetanilide, respectively. A cDNA library was prepared in pBR322 from sucrose gradient fractionated total liver poly(A+)-enriched RNA (approximately 20 S) from 2,3,7,8-tetrachlorodibenzo-p-dioxin- (TCDD) treated C57BL/6N (Ahb/Ahb) mice. Differential colony hybridization screening, with [32P]cDNA probes derived from total liver mRNA of both TCDD-treated and control C57BL/6N mice, yielded pP(3)450-21 (1710 base pair) and pP(1)450-57 (1770 base pair) cDNA clones. pP(1)450-57 was found to have 690 base pairs 5'-ward of the original P1-450 cDNA cloned in this laboratory. Restriction maps of pP(3)450-21 and pP(1)450-57 are markedly different and clearly are derived from separate genes. By means of hybridization-translation-arrest experiments, anti-(P3-450) precipitates the translation product (Mr approximately equal to 55000) of mRNA specifically hybridizing to pP(3)450-21. It is also shown that hybridization-translation-arrest experiments using polyclonal antibodies are not specific for proof of a P-450 cDNA clone. pP(3)450-21 was used to probe liver mRNA from Ahb/Ahb, Ahb/Ahd, and Ahd/Ahd mice treated with 3-methylcholanthrene, beta-naphthoflavone, aroclor 1254, isosafrole, low TCDD, or high TCDD. These genetic data rigorously demonstrate control of the P3-450 (20S) mRNA induction process by the Ah receptor. pP(3)450-21 fragments hybridized to TCDD-induced C57BL/6N mRNA and to a portion of the cloned 5' end of the P1-450 gene from a mouse MOPC 41 plasmacytoma library.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The food mutagen/carcinogen amino-3-methylimidazo[4,5-f]quinoline (IQ) is activated by cytochrome p4501a-2 via N-hydrox-ylation; various P450s may contribute to detoxification via ring hydroxylation. Alterations in P450 levels by IQ treatment might therefore influence its toxicity. To examine the role of Ah locus genotype on the biochemical effects of IQ, C57BL/6 (AhbAhb; p450Ia-½ inducible) and DBA/2 (AhdAhd, noninducible) mice of both sexes were given IQ at varying doses, with different vehicles and routes of administration. Livers taken after 24 hours were assessed for total cytochrome p450 and activities of ethoxyresorufin-O-deethylase (EROD, a p4501a-l activity, inducible in Ahb mice), meth-oxyresorufin-O-demethylase (MROD, a p4501a-2 activity), and benzyloxyresorufin-O-dealkylase (BzROD, an activity of p4502b). There was little effect on total cytochrome p450, but all three enzyme activities were often induced, a maximum of 2.5-fold, in both sexes and in DBA/2 as well as C57BL/6 mice. However, Western immunoblot analysis with monoclonal antibodies demonstrated an increase only in p4501a-2 protein. p4501a-l remained undetectable. A monoclonal antibody to p4502-b recognized one protein band in liver mi-crosomes from males and two bands in female mice of both strains. Amounts of these proteins were not altered by IQ treatment. Thus, IQ specifically, if moderately, induces its activating enzyme, p4501a-2, in a process that was not clearly related to Ah responsiveness.  相似文献   

6.
The aromatic hydrocarbon responsiveness (Ah) locus has been correlated with genetic differences in the risk of drug toxicity, teratogenesis, chemical carcinogenesis, and mutagenesis. Hepatic cytosolic Ah receptor levels, 2-amino-5-chlorobenzoxazole (zoxazolamine) paralysis time following beta-naphthoflavone treatment and aryl hydrocarbon hydroxylase (AHH3, acetanilide 4-hydroxylase (Ac4H), and NAD(P)H:menadione oxidoreductase (NMOR)4, induction by 3-methylcholanthrene were studied in (a) the progenitors C57BL/6J (Ahb/Ahb) and DBA/2J (Ahd/Ahd) and 25 BXD recombinant inbred lines, (b) the progenitors C57BL/6N and C3H/HeN and 14 B6NXC3N recombinant inbred lines, and (c) the progenitors C57BL/6J and C3H/HeJ and 12 BXH recombinant inbred lines. The Ahb phenotype exhibits greater than 5 femtomole receptor/mg of cytosolic protein, less than or equal to 15 minutes zoxazolamine paralysis time, and twofold to 15-fold induction of these three hepatic enzyme activities; the Ahd phenotype exhibits less than or equal to 2 fmol receptor/mg protein, greater than 15 minutes zoxazolamine paralysis time, and less than 30% induction of these three activities. Among the BXD lines but especially among the B6NXC3N and BXH lines, high frequencies of recombination were found; the phenotype of each of the five parameters did not segregate with the phenotype of each of the other parameters in four or more recombinant lines. This report shows for the first time that AHH induction by 3-methylcholanthrene can occur in the Ahd phenotype mouse. These data underline the complexity of this genetic system when genes from C57BL/6 and DBA/2 are combined and particularly when genes from C57BL/6 and C3H/He inbred mouse strains are combined.  相似文献   

7.
Isosafrole induction of cytochrome P-450 was compared in congenic strains of C57BL/6J mice, one of which expresses normal levels of the Ah receptor [B6(Ahb)], and another that does not contain a measurable receptor concentration [B6(Ahd)]. Using sucrose gradient analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) binding, an Ah receptor concentration of 69.1 +/- 3.8 fmol/mg protein was measured in the hepatic cytosol from B6(Ahb) mice, while no receptor could be detected in the cytosol from B6(Ahd) mice. Isosafrole treatment (75 mg/kg X 3 days) increased the total hepatic microsomal cytochrome P-450 content to the same extent in the two congenic strains. The level of microsomal monooxygenase induction in the isosafrole-treated B6(Ahd) mice was greater than that of B6(Ahb) mice for ethylmorphine N-demethylase and isosafrole metabolite-complex formation, the latter a measure of cytochrome P2-450. In the case of 7-ethoxycoumarin O-deethylase only the isosafrole-treated B6(Ahd) mice had elevated microsomal activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) also revealed a similar induction pattern for the two congenic strains, following isosafrole treatment. Thus, the isosafrole treated B6(Ahd) mice produced an equivalent or slightly larger induction of cytochrome P-450 than the B6(Ahb) mice, suggesting that there is no direct role for the Ah receptor in the regulation of these cytochrome P-450 monooxygenase activities by isosafrole.  相似文献   

8.
Selective induction of coumarin 7-hydroxylase by pyrazole in D2 mice   总被引:3,自引:0,他引:3  
Pyrazole, was given to DBA/2N (D2), C57BL/6N (B6) and AKR/N mice to study its effects on hepatic drug metabolism. A decrease in the total amount of microsomal cytochrome P-450 as well as in the activities of ethylmorphine demethylase and benzo[a]pyrene hydroxylase was found. On the other hand ethoxycoumarin de-ethylase was increased 1.5-2.5-fold (depending on the strain of mouse) and coumarin 7-hydroxylase as much as sevenfold (but only in D2 mice) after pyrazole treatment. This increase was much higher than that caused by phenobarbital, the only well known inducer of coumarin 7-hydroxylase. By reconstituting the mono-oxygenase complex after purification of cytochrome P-450 we found a 40-fold increase in coumarin 7-hydroxylase and eightfold increase in ethoxycoumarin de-ethylase after pyrazole treatment. This was found only in D2 mice. An antibody previously developed against a cytochrome P-450 fraction from the the D2 strain with a high coumarin 7-hydroxylase activity inhibited the microsomal coumarin 7-hydroxylase almost 100% after pyrazole pretreatment of the animals. In the case of control or phenobarbital-treated mice the inhibition was somewhat weaker. With the reconstituted mono-oxygenase complex the inhibition of coumarin 7-hydroxylase was almost 100% both for control and pyrazole-treated D2 mice. The data indicate that pyrazole causes an induction of the microsomal monooxygenase complex different from that caused by phenobarbital or 3-methylcholanthrene and selective for coumarin 7-hydroxylation or 7-ethoxycoumarin de-ethylation. This induction was strong in D2, weak in B6 and absent in AKR/N mice.  相似文献   

9.
The effect of various microsomal enzyme inducers such as DDT, benzpyrene, 3-MC, TCDD or phenobarbital on liver microsomal mixed-function oxidases and cytochrome P450 content in mice genetically responsive (C57B1/6J) and resistant (DBA/2J) to induction of aryl hydrocarbon hydroxylase (AHH) was studied. 3-MC and benzpyrene administration stimulated liver AHH activity 6–8 fold in C57B1/6J mice but had no effect in DBA/2J mice. However, intraperitoneal administration of TCDD increased AHH activity in both C57BL/6J and DBA/2J mice. This increase was accompanied by shift in the peak of cytochrome P450 difference spectrum from 450 to 448 nm. It is concluded that genetic resistance to AHH stimulation in DBA/2J mice is influenced by the type of inducer used.  相似文献   

10.
11.
12.
Mouse cytochrome P1-450 and P3-450 are most closely associated with induced aryl hydrocarbon (benzo[a]pyrene) hydroxylase (EC 1.14.14.1) and acetanilide 4-hydroxylase activity, respectively. Full-length cDNA clones of P1-450 and P3-450 were generated from mRNA isolated from 3-methylcholanthrene-treated C57BL/6N mouse liver. P1-450 cDNA is 2620 nucleotides in length and has a coding region (base 110 to 1,675) that produces a protein with 521 residues (Mr = 58,914). P3-450 cDNA is 1,894 nucleotides in length and yields a protein with 513 residues (Mr = 58,183). P1-450 mRNA is the first reported example in mouse in which UAG is used as the termination codon. P1-450 and P3-450, both induced by polycyclic hydrocarbons and regulated by the Ah receptor, exhibit overall nucleotide and protein homology of 68, and 73%, respectively. Segments of high homology, interspersed with regions of low homology, support the hypothesis of gene conversion or unequal crossing over as possible mechanisms for divergence of these two genes. Mouse P1-450 and P3-450 cDNAs were compared with previously published data on rat P-450e cDNA and rabbit form 2 protein, corresponding to two P-450 genes from the "phenobarbital inducible" P-450 gene subfamily. Nucleotide homology between a member of either gene subfamily is about 30%, and protein homology is about 15%, suggesting that the Ah locus-associated P-450 gene subfamily diverged from the phenobarbital inducible P-450 subfamily more than 200 million years ago. An N-terminal and a C-terminal cysteinyl fragment corresponding to the regions around P1-450 Cys-158 and Cys-458, respectively, are the only two cysteinyl peptides conserved among all four proteins compared. Because of greater homology in the C-terminal conserved cysteinyl fragment between the two gene subfamilies and a greater hydrophobic pocket in the C-terminal conserved cysteinyl fragment, the data favor this cysteine as the more likely candidate for the thiolate ligand to the heme iron in the P-450 enzyme active-site.  相似文献   

13.
Induction of hepatic 4-methylumbelliferone UDP-glucuronosyltransferase (EC 2.4.1.17) by polycyclic aromatic compounds, such as 3-methylcholanthrene or beta-naphthoflavone, occurs in C57BL/6N, A/J, PL/J, C3HeB/FeJ, and BALB/cJ but not in DBA/2N, AU/SsJ, AKR/J, or RF/J inbred strains of mice. This pattern of five responsive and five nonresponsive mouse strains parallels that of the Ah locus, which controls the induction of aryl hydrocarbon (benzo[alpha]pyrene) hydroxylase (EC 1.14.14.2). Induction of the transferase is maximal in C57BL/6N mice with 200 mg of 3-methylcholanthrene/kg body weight; no induction occurs in nonresponsive DBA/2N mice even at a dose of 400 mg/kg. The rise of inducible transferase activity lags 1 or more days behind the rise of inducible hydroxylase activity and peaks 5 days after a single dose of 3-methylcholanthrene. In offspring from the appropriate backcrosses and intercross between C57BL/6N and DBA/2N parent strains, the genetic expression of 3-methylcholanthrene-inducible transferase activity is inherited as an additive (co-dominant) trait. This expression differs distinctly from that of the inducible hydroxylase activity, which is inherited almost exclusively as a single autosomal dominant trait in these same animals. The more potent inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin induces the transferase more than 3-fold in C57BL/6N mice and less than 2-fold in DBA/2N mice, whereas the hydroxylase is induced equally (about 8-fold) in both strains. A dose of 3-methylcholanthrene given 3 days after 2,3,7,8-tetrachlorodibenzo-p-dioxin, at a time when hydroxylase induction in both strains is very high, does not enhance the rise in inducible transferase activity seen in C57BL/6N or DBA/2N mice which have received 2,3,7,8-tetrachlorodibenzo-p-dioxin alone. These data indicate that (a) the inducibility of two metabolically coordinated membrane-bound enzyme activities may be regulated by a single genetic locus, and (b) although the hydroxylase can be fully induced in the nonresponsive DBA/2N strain by 2,3,7,8-tetrachlorodibenzo-p-dioxin prior to 3-methylcholanthrene treatment, metabolites of the 3-methylcholanthrene treatment, metabolites of the 3-methylcholanthrene treatment, metabolites of the 3-methylcholanthrene, presumably present in the liver, are incapable of inducing further the transferase activity. The difference in sensitivity between 3-methylcholanthrene and the more potent inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin for both the hydroxylase and the transferase activities suggests the possibility of a common receptor in regulating both enzyme induction processes.  相似文献   

14.
A simple and very sensitive method for the separation of 4-hydroxyacetanilide, 3-hydroxyacetanilide, 2-hydroxyacetanilide, and acetanilide was developed with the use of high-pressure liquid chromagraphy. Each of these phenolic derivatives can be separated completely from acetanilide and from one another. A simple assay for “acetanilide 4-hydroxylase activity” is thus described. The limit of sensitivity for cytochrome P-450-mediated acetanilide 4-hydroxylase activity is estimated to be 1.0 pmol/min/mg microsomal protein, thereby allowing this assay to be useful in detecting monooxygenase activity in “low level” nonhepatic tissues. Hepatic acetanilide 4-hydroxylase activity is induced about fourfold in C57BL6N mice by 3-methylcholanthrene. Although acetanilide 2-hydroxylase activity is about seven times lower than the 4-hydroxylase activity, the 2-hydroxylase is also induced about three- or fourfold in C57BL6N mice by 3-methylcholanthrene. The “2-hydroxylase activity” cannot, however, be strictly quantitated under the conditions described herein. The Km values of both the 3-methylcholanthrene-induced and control 4-hydroxylase activity are about 0.55 mm; Vmax values for 3-methylcholanthrene-treated and control mice, respectively, are 4.9 ± 1.1 and 1.1 ± 0.31 nmol/min/mg microsomal protein. The 4-hydroxylase in the liver of both 3-methylcholanthrene-treated and control mice appears to represent two or more catalytic activities, i.e., two or more forms of P-450 having widely differing affinities for the substrate acetanilide.  相似文献   

15.
The potentials of octachlorostyrene (OCS) and hexachlorobenzene (HCB) to induce liver microsomal ethoxyphenoxazone deethylation (an indicator of induction of 3-methylcholanthrene and beta-naphthoflavone-like cytochrome P-450 monoxygenase activity) and cause porphyria in male C57BL/6 and C57BL/10 mice and female F344 rats were compared. Ethoxyphenoxazone deethylation was induced much more by HCB than by OCS in both of these strains of mice (although neither OCS nor HCB greatly induced deethylation in the DBA/2 strain). In rats ethoxyphenoxazone deethylase was induced 26-fold by HCB but only four-fold by OCS, whereas dealkylation of pentoxyphenoxazone (an indicator of phenobarbital-like induction) increased 43- and 36-fold, respectively. Both chemicals were poor inducers of dealkylation of pentoxyphenoxazone in mice. When fed HCB continuously but not when given OCS, C57BL/6 and C57BL/10 mice (both after pretreatment with iron) and F344 rats developed porphyria with a depression of hepatic uroporphyrinogen decarboxylase activity. The results illustrate that in these species OCS and HCB cannot be considered as equally efficient agents for inducing ethoxyphenoxazone deethylation or causing porphyria. If these effects are mediated through binding to the aromatic hydrocarbon responsiveness (Ah) receptor, HCB would appear to have a much greater affinity than OCS despite the face that neither chemical possesses a structure currently considered to be necessary for efficient binding.  相似文献   

16.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At greater than 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70 chi), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58 chi) and P-450d (8 chi), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ah-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10(-6) to 10(-5) M).  相似文献   

17.
1. Endrin is a polyhalogenated cyclic hydrocarbon which produces hepatic and neurologic toxicity. In order to further assess the mechanism of toxicity ofendrin, the dose-dependent effects of endrin on hepatic lipid peroxidation and DNA damage, and nitric oxide (NO) production by peritoneal exudate cells (primarily macrophages) were investigated in C57BL/6J and DBA/2 mice which vary at the Ah receptor genetic locus. C57BL/6J mice are dioxin-responsive, while DBA/2 mice are dioxin-insensitive.2. Mice of both strains were treated with 0, 1, 2 or 4 mg endrin kg−1 as a single oral dose in corn oil, and the animals were killed 24 hr post-treatment. At doses of 1,2 and 4 mg endrin kg−1 in C57BL/6J mice, hepatic mitochondrial lipid peroxidation increased 1.2-, 2.2- and 3.2-fold, respectively, and 1.8-, 2.3- and 3.5-fold with microsomes, respectively. At these same doses in DBA/2 mice, hepatic mitochondrial lipid peroxidation increased 1.3-, 2.0- and 2.6-fold, respectively, and 1.5-, 1.9- and 2.5-fold with microsomes, respectively.3. Increases of 2.3-, 2.4- and 4.9-fold were observed in hepatic DNA damage (elution constants) in C57BL/6J mice at doses of 1, 2 and 4 mg endrin kg−1, respectively, while at these same three doses, increases of 1.9-, 2.1- and 2.3-fold were observed for DBA/2 mice, respectively.4. Nitric oxide production by peritoneal macrophages from C57BL/6J increased by 1.3-, 1.7- and 2.0-fold with doses of 1, 2 and 4 mg endrin kg−1, respectively, while in macrophages from DBA/2 mice at these same doses, increases of 1.7-, 1.7- and 1.8-fold, respectively, were observed.5. The results indicate that the responsiveness of peritoneal macrophages with respect to both DNA damage and nitric oxide production are more dose-dependent in C57BL/6J mice as compared to DBA/2 mice, while similar results are observed with the lipid peroxidation of hepatic mitochondria and microsomes of the two mouse strains. The results suggest that the toxicity of endrin is less reliant on a mechanism which may involve the Ah receptor system as compared to dioxins as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).  相似文献   

18.
The interaction of isosafrole, 3,4,5,3',4',5'-hexabromobiphenyl (HBB) and hexachlorobiphenyl (HCB) with cytochrome P-450d was evaluated by characterization of estradiol 2-hydroxylase activity. Displacement of the isosafrole metabolite from microsomal cytochrome P-450d derived from isosafrole-treated rats resulted in a 160% increase in estradiol 2-hydroxylase. The increase was fully reversed by incubation with 1 microM HBB. Although isosafrole is capable of forming a complex with many different cytochrome P-450 isozymes, it appears to bind largely to cytochrome P-450d in vivo as was demonstrated by measuring the enzymatic activity of microsomal cytochromes P-450b, P-450c, and P-450d from isosafrole-treated rats. When estradiol 2-hydroxylase was measured in rats treated with increasing doses of HCB, there was a gradual decrease in microsomal enzyme activity despite a 20-fold increase in cytochrome P-450d. The ability of cytochrome P-450d ligands to stabilize the enzyme was investigated in two ways. First, cytochromes P-450c and P-450d were quantitated immunochemically in microsomes from rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at a dose which maximally induced total cytochrome P-450, followed by a single dose of a second inducer. The specific content of cytochrome P-450d was significantly increased when isosafrole or HCB was the second inducer but not when 3-methylcholanthrene was the second inducer. Second, the relative turnover of cytochrome P-450d was measured by the dual label technique. Following TCDD treatment, microsomal protein was labeled in vivo with [3H]leucine, the second inducer was given and protein was again labeled 3 days later with [14C]leucine. A higher ratio of 3H/14C in the cytochrome P-450d from isosafrole + TCDD- and HCB + TCDD-treated rats relative to TCDD (control)-treated rats suggested that isosafrole and HCB were able to retard the degradation of cytochrome P-450d, presumably by virtue of being tightly bound to the enzyme.  相似文献   

19.
The metabolism of the polycyclic aromatic hydrocarbon (PAH) carcinogen benzo[a]pyrene (BaP) was studied using microsomes prepared from the skin of the mouse and rat. Topical application of the polychlorinated biphenyl (PCB) Aroclor 1254 or the PAH 3-methylcholanthrene (3-MC) to the skin of the C57BL/6N and DBA/2N mouse and the Sprague-Dawley rat caused statistically significant enhancement of cutaneous microsomal aryl hydrocarbon hydroxylase (AHH) activity in each animal. PCB was a more potent inducer of the enzyme than was 3-MC. BaP metabolism by skin microsomes from the same animals was assessed using high performance liquid chromatography (HPLC). The skin of untreated animals metabolized BaP into 9,10-, 7,8- and 4,5-dihydrodiols, phenols and quinones. Skin application of PCB caused greater than 16–18-fold enhancement of BaP metabolism in the C57BL/6N mouse and the rat and 2–5-fold enhancement in the DBA/2N mouse. Skin application of 3-MC enhanced BaP metabolism 2–8-fold in the C57BL/6N mouse and 5–10-fold in the rat and had no effect in the DBA/2N mouse. The formation of procarcinogenic metabolite BaP-7, 8-diol was greatly enhanced (4–12-fold) by treatment with the PCB and 3-MC in the tumor susceptible C57BL/6N mouse and in the tumor-resistant neonatal Sprague-Dawley rat. In contrast, the formation of BaP-7,8-diol was either slightly enhanced (2-fold) or unaffected by treatment with the PCB or 3-MC in the tumor-resistant DBA/2N mouse. Our data indicate that neither the patterns of metabolism nor the amount of BaP-7,8-diol formation in the skin are reliable predictors of tumor susceptibility to the PAH in rodent skin.  相似文献   

20.
The Ah locus encodes a cytosolic receptor which controls the induction of enzymes that metabolize drugs, chemical carcinogens, and other environmental pollutants. B6NXC3N recombinant inbred lines have been developed from the progenitors C57BL/6N and C3H/HeN inbred mouse strains. Ah phenotyping at each generation has resulted in the establishment of some lines containing high levels of the high-affinity Ah receptor; other lines, very low levels. A genetic model involving two unlinked loci is offered to explain the distribution of Ah receptor levels among (C57BL/6N) (C3H/HeN)F2 individuals. Between generations 7 and 13, individual females and males from the B6NXC3N recombinant inbred lines were crossed with DBA/2N males and females. Presence of high levels of the high-affinity Ah receptor in both female and male B6NXC3N mice was found to be associated with greater fertility, fitness, and longer life span. The data suggest that these parameters are correlated with the Ah locus or a closely segregating gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号