首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Past studies have shown that the cell surface lipopolysaccharides (LPSs) of the ubiquitous human gastric pathogen Helicobacter pylori (a type 1 carcinogen) isolated from people residing in Europe and North America express predominantly type 2 Lewis x (Le(x)) and Le(y) epitopes and, infrequently, type 1 Le(a), Le(b), and Le(d) antigens. This production of Lewis blood-group structures by H. pylori LPSs, similar to those found in the surfaces of human gastric cells, allows the bacterium to mimic its human niche. In this study, LPSs of H.pylori strains extracted from patients living in China, Japan, and Singapore were chemically and serologically analyzed. When compared with Western H.pylori LPSs, these Asian strains showed a stronger tendency to produce type 1 blood groups. Of particular interest, and novel observations in H.pylori, the O-chain regions of strains F-58C and R-58A carried type 1 Le(a) without the presence of type 2 Le(x), strains R-7A and H607 were shown to have the capability of producing the type 1 blood group A antigen, and strains CA2, H507, and H428 expressed simultaneously the difucosyl isomeric antigens, type 1 Le(b) and type 2 Le(y). The apparent proclivity for the production of type 1 histo-blood group antigens in Asian H.pylori LPSs, as compared with Western strains, may be an adaptive evolutionary effect in that differences in the gastric cell surfaces of the respective hosts might be significantly dissimilar to select for the formation of different LPS structures on the resident H.pylori strain.  相似文献   

2.
Helicobacter pylori is an important gastroduodenal pathogen of humans whose survival in the gastric environment below pH 4 is dependent on bacterial production of urease, whereas above pH 4 urease-independent mechanisms are involved in survival, but that remain to be elucidated fully. Previous structural investigations on the lipopolysaccharides (LPSs) of H. pylori have shown that the majority of these surface glycolipids express partially fucosylated, glucosylated, or galactosylated N-acetyllactosamine (LacNAc) O-polysaccharide chains containing Lewis(x) (Le(x)) and/or Lewis(y) (Le(y)), although some strains also express type 1 determinants, Lewis(a), Lewis(b), and H-1 antigen. In this study, we investigated acid-induced changes in the structure and composition of LPS and cellular lipids of the genome-sequenced strain, H. pylori 26695. When grown in liquid medium at pH 7, the O-chain consisted of a type 2 LacNAc polysaccharide, which was glycosylated with alpha-1-fucose at O-3 of the majority of N-acetylglucosamine residues forming Le(x) units, including chain termination by a Le(x) unit. However, growth in liquid medium at pH 5 resulted in production of a more complex O-chain whose backbone of type 2 LacNAc units was partially glycosylated with alpha L-fucose, thus forming Le(x), whereas the majority of the nonfucosylated N-acetylglucosamine residues were substituted at O-6 by alpha-D-galactose residues, and the chain was terminated by a Le(y) unit. In contrast, detailed chemical analysis of the core and lipid A components of LPS and analysis of cellular lipids did not show significant differences between H. pylori 26695 grown at pH 5 and 7. Although putative molecular mechanisms affecting Le(x) and Le(y) expression have been investigated previously, this is the first report identifying an environmental trigger inducing phase variation of Le(x) and Le(y) in H. pylori that can aid adaptation of the bacterium to its ecological niche.  相似文献   

3.
The influence of lipopolysaccharide (LPS) O-polysaccharide chain production on the colonisation ability of Helicobacter pylori in four mouse models (NMRI, C57BL/6, CBA/Ca, and BALB/cA mice) was studied. H. pylori strains that produced smooth-form LPS (S-LPS) detectable in silver-stained electrophoretic gels colonised mice. In contrast, a laboratory-passaged strain G50 and the culture collection strain CCUG 17874 did not colonise mice; the former strain produced low amounts of O-chains only detectable in immunoblotting but not in silver-stained gels, whereas the latter produced rough-form LPS (R-LPS) without O-chains. Furthermore, a galE isogenic mutant, which produced R-LPS, did not colonise mice. However, after repeated broth culture, strains G50 and CCUG 17874 produced S-LPS detectable in silver-stained gels and were capable of colonising mice. Consistent with the production of O-chains, all colonising strains produced Lewis (Le) antigens, Le(x) and/or Le(y). Except for low expression of Le(y) by non-colonising G50, reflecting low production of O-chains, all other non-colonising strains and the galE mutant lacked expression of Le antigens consistent with their production of R-LPS. Lectin typing of strains supported these findings, and also showed that lectin types did not differ before and after colonisation. The low level of O-chain production and Le antigen expression by the non-colonising G50 may not be sufficient to aid colonisation. Examination of protein profiles of H. pylori strains before inoculation showed that protein expression was not significantly different between colonising and non-colonising strains. These results show that S-LPS production with O-chain expression is required by H. pylori for colonisation in a number of mouse models and that care should be taken with inoculating H. pylori strains that loss of O-chains does not occur during subculturing.  相似文献   

4.
Altman E  Chandan V  Li J  Vinogradov E 《The FEBS journal》2011,278(18):3484-3493
In this study, we describe a reinvestigation of the lipopolysaccharide (LPS) structure of Helicobacter pylori strain Sydney (SS1) based on the NMR analysis of oligosaccharides obtained through the use of various degradations of the LPS as well as capillary electrophoresis-MS data. The results of the analysis indicated that the core region of a major H. pylori SS1 LPS glycoform consists of a backbone core oligosaccharide substituted at the D-glycero-D-manno-heptose (DD-Hep) residue by a linear chain composed of a trisaccharide fragment α-ddHep-3-α-L-Fuc-3-β-GlcNAc, as previously demonstrated for H. pylori strain 26695, further elongated by consecutively added α-Glc and β-Gal residues, and terminating in a novel linear chain consisting of 1,2-linked β-ribofuranosyl residues, where the last β-ribofuranosyl residue provides a point of attachment for the O-chain polysaccharide: [Formula: see text] where [2-β-Ribf-](n) is a short (three to five residues) oligomer of 1,2-linked β-ribofuranose (riban), and PS is a polysaccharide chain consisting of N-acetyllactosamine, substituted with α-Fuc to form Lewis (Le)-type structures. In addition to the previously identified LacNAc, Le(y) and Le(x) components, the O-chain polysaccharide of H. pylori SS1 LPS was found to contain a novel LacNAc unit carrying a phosphoethanolamine substituent at the O-6 position of β-GlcNAc residues.  相似文献   

5.
Helicobacter pylori is a widespread Gram-negative bacterium responsible for the onset of various gastric pathologies and cancers in humans. A familiar trait of H. pylori is the production of cell-surface lipopolysaccharides (LPSs; O-chain --> core --> lipid A) with O-chain structures analogous to some mammalian histo-blood-group antigens, those being the Lewis determinants (Lea, Leb, Lex, sialyl Lex, Ley) and blood groups A and linear B. Some of these LPS antigens have been implicated as autoimmune, adhesion, and colonization components of H. pylori pathogenic mechanisms. This article describes the chemical structures of LPSs from H. pylori isolated from subjects with no overt signs of disease. Experimental data from chemical- and spectroscopic-based studies unanimously showed that these H. pylori manufactured extended heptoglycans composed of 2- and 3-linked D-glycero-alpha-D-manno-heptopyranose units and did not express any blood-group O-antigen chains. The fact that another H. pylori isolate with a similar LPS structure was shown to be capable of colonizing mice indicates that H. pylori histo-blood-group structures are not an absolute prerequisite for colonization in the murine model also. The absence of O-chains with histo-blood groups may cause H. pylori to become inept in exciting an immune response. Additionally, the presence of elongated heptoglycans may impede exposure of disease-causing outer-membrane antigens. These factors may render such H. pylori incapable of creating exogenous contacts essential for pathogenesis of severe gastroduodenal diseases and suggest that histo-blood groups in the LPS may indeed play a role in inducing a more severe H. pylori pathology.  相似文献   

6.
7.
Outer membrane vesicles (OMVs) shed from the gastroduodenal pathogen Helicobacter pylori have measurable effects on epithelial cell responses. The aim of this study was to determine the effect of iron availability, and its basis, on the extent and nature of lipopolysaccharide (LPS) produced on H. pylori OMVs and their parental bacterial cells. Electrophoretic, immunoblotting and structural analyses revealed that LPSs of bacterial cells grown under iron-limited conditions were notably shorter than those of bacteria and OMVs obtained from iron-replete conditions. Structural analysis and serological probing showed that LPSs of iron-replete cells and OMVs expressed O-chains of Lewis(x) with a terminal Lewis(y) unit, whereas Lewis(y) expression was notably reduced on bacteria and OMVs from iron-limiting conditions. Unlike the O-chain, the core oligosaccharide and lipid A moieties of iron-replete and iron-limited bacteria and their OMVs were similar. Quantitatively, shed OMVs from iron-replete bacteria were found to be LPSenriched, whereas shed OMVs from iron-limited bacteria had a significantly reduced content of LPS. These differences were linked to bacterial ATP levels. Since iron availability affects the extent and nature of LPS expressed by H. pylori, host iron status may contribute to H. pylori pathogenesis.  相似文献   

8.
Lipopolysaccharides (LPS) are a family of toxic phosphorylated glycolipids in the outer membrane of Gram-negative bacteria, including Helicobacter pylori, and are composed of a lipid moiety (termed lipid A), a core oligosaccharide, and a polymeric O-specific polysaccharide chain. Compared with LPS of other bacteria, H. pylori LPS and lipid A induce low immunological activities in a range of test systems. Nevertheless, these reduced levels of LPS-induced cytokines and toxic oxygen radicals can contribute, with those induced by bacterial proteins, to the H. pylori-associated inflammatory response. Whether the ability of H. pylori LPS to induce low production of both procoagulant activity and plasminogen activator inhibitor type 2 by human mononuclear cells contributes to localized inflammatory responses alone and, in addition, play a role in extragastric pathology remains an open question. The core oligosaccharide of H. pylori LPS, in part with a 25 kDa protein adhesin, mediates the binding of the bacterium to the host glycoprotein laminin, and hence interferes with gastric cell receptor-laminin interaction in the basement membrane. Also affecting mucosal integrity, the core sugars of certain H. pylori strains, particularly those associated with gastric ulceration, have been implicated in pepsinogen induction, but this is a strain-dependent phenomenon. Of particular interest, the O-chains of a large proportion of H. pylori strains mimic Lewis (Le) antigens. Although investigations have focussed on the role of these antigens in H. pylori-associated autoimmunity, which remains to be unequivocally established, other pathogenic consequences of Lewis mimicry are becoming apparent. Expression of Lewis antigens may be crucial for H. pylori colonization and adherence and, by aiding bacterial interaction with the gastric mucosa, thereby aid delivery of secreted products, and hence influence the inflammatory response.  相似文献   

9.
Helicobacter pylori NCTC11637 expresses a lipopolysaccharide (LPS) that comprises an O antigen side-chain with structural homology to the human blood group antigen Lewis X (Le(x)). The role of this molecule in adhesion of H. pylori to gastric epithelial cells was investigated. Mutants expressing truncated LPS structures were generated through insertional mutagenesis of rfbM and galE; genes encode GDP mannose pyrophosphorylase and galactose epimerase respectively. Compositional and structural analysis revealed that the galE mutant expressed a rough LPS that lacked an O antigen side-chain. In contrast, an O antigen side-chain was still synthesized by the rfbM mutant, but it lacked fucose and no longer reacted with anti-Le(x) monoclonal antibodies (Mabs). The ability of these mutants to bind to paraffin-embedded sections from the antrum region of a human stomach was assessed. Adhesion of the wild type was characterized by tropic binding to the apical surface of mucosal epithelial cells and cells lining gastric pits. In contrast, both the rfbM and galE mutants failed to demonstrate tropic binding and adhered to the tissue surface in a haphazard manner. These results indicate that LPS and, more specifically, Le(x) structures in the O antigen side-chain play an important role in targeting H. pylori to specific cell lineages within the gastric mucosa. The role of Le(x) in this interaction was confirmed by the tropic binding of synthetic Le(x), conjugated to latex beads, to gastric tissue. The observed pattern of adhesion was indistinguishable from that of wild-type H. pylori.  相似文献   

10.
Helicobacter pylori bacteria colonize the gastric mucosa of more than half of the world's human population and its infection may instigate a wide spectrum of gastric diseases in the host. At the moment, there is no vaccine against H. pylori, a microorganism recognized as a category 1 human carcinogen, and treatment is limited to antibiotic management. Pioneering antigenic studies carried out by Penner and co-workers, which employed homologous H. pylori antisera specific for cell-surface lipopolysaccharide (LPS), revealed the presence of six distinct H. pylori serotypes (O1 to O6). Subsequent studies have shown that H. pylori serotype O1 expressed LPS with lengthy O-chain polysaccharide (PS) composed of Lewis blood-group structures ('Lewis O-chains'), serotype O3 LPS produced 'Lewis O-chains' attached to a heptoglycan domain, serotype O4 LPS possessed LPS with glucosylated 'Lewis O-chains' and serotype O6 LPS expressed the heptoglycan domain capped by a short 'Lewis O-chain'. These LPSs were terminated at the reducing-end by a core oligosaccharide and lipid A of conserved structures. With the intent of formulating a multivalent H. pylori LPS-based vaccine, we are studying the structural variability of H. pylori cell-surface glycans. Here, we describe the novel LPS structure produced by H. pylori serotype O2 that differed markedly from the typical H. pylori 'Lewis O-chain' structures, in that its main component was an elongated PS composed of alternating 2-, and 3-monosubstituted alpha-D-Glcp residues [-->2)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]n. These findings revealed the bio-molecular basis for the observed serospecificity of H. pylori serotype O2, and that this unique bacterial PS must be included in the formulation of a multivalent LPS H. pylori vaccine.  相似文献   

11.
The cell envelope of Helicobacter pylori contains lipopolysaccharide (LPS), the O-chain of which expresses type 2 Lex and Ley blood group antigens, which mimic human gastric mucosal cell-surface glycoconjugates and may contribute to the survival of H. pylori in gastric mucosa. Here we describe the generation of monoclonal antibodies specific for Lex and Ley blood group determinants and the characterization of their binding properties using purified, structurally defined H. pylori LPS, synthetic glycoconjugates, and H. pylori cells. Analysis of oligosaccharide binding by SPR provided a rapid and reliable means for characterization of antibody affinities. One of the antibodies, anti-Lex, was of IgG3 subclass and had superior binding characteristics as compared with the commercially available anti-Lex IgM. These antibodies could have potential in the immunodiagnosis of certain types of cancer, in serotyping of H. pylori isolates, and in structure-function studies.  相似文献   

12.
Moran AP 《Carbohydrate research》2008,343(12):1952-1965
Helicobacter pylori is a prevalent bacterial, gastroduodenal pathogen of humans that can express Lewis (Le) and related antigens in the O-chains of its surface lipopolysaccharide. The O-chains of H. pylori are commonly composed of internal Le(x) units with terminal Le(x) or Le(y) units or, in some strains, with additional units of Le(a), Le(b), Le(c), sialyl-Le(x) and H-1 antigens, as well as blood groups A and B, thereby producing a mosaicism of antigenic units expressed. The genetic determination of the Le antigen biosynthetic pathways in H. pylori has been studied, and despite striking functional similarity, low sequence homology occurs between the bacterial and mammalian alpha(1,3/4)- and alpha(1,2)-fucosyltransferases. Factors affecting Le antigen expression in H. pylori, that can influence the biological impact of this molecular mimicry, include regulation of fucosyltransferase genes through slipped-strand mispairing, the activity and expression levels of the functional enzymes, the preferences of the expressed enzyme for distinctive acceptor molecules and the availability of activated sugar intermediates. Le mimicry was initially implicated in immune evasion and gastric adaptation by the bacterium, but more recent studies show a role in gastric colonization and bacterial adhesion with galectin-3 identified as the gastric receptor for polymeric Le(x) on the bacterium. From the host defence aspect, innate immune recognition of H. pylori by surfactant protein D is influenced by the extent of LPS fucosylation. Furthermore, Le antigen expression affects both the inflammatory response and T-cell polarization that develops after infection. Although controversial, evidence suggests that long-term H. pylori infection can induce autoreactive anti-Le antibodies cross-reacting with the gastric mucosa, in part leading to the development of gastric atrophy. Thus, Le antigen expression and fucosylation in H. pylori have multiple biological effects on pathogenesis and disease outcome.  相似文献   

13.
The lipopolysaccharides (LPS) of most Helicobacter pylori strains contain complex carbohydrates known as Lewis antigens that are structurally related to the human blood group antigens. Investigations on the genetic determinants involved in the biosynthesis of Lewis antigens have led to the identification of the fucosyltransferases of H. pylori, which have substrate specificities distinct from the mammalian fucosyltransferases. Compared with its human host, H. pylori utilizes a different pathway to synthesize the difucosylated Lewis antigens, Lewis y. and Lewis b. Unique features in the H. pylori fucosyltransferase genes, including homopolymeric tracts mediating slipped-strand mispairing and the elements regulating translational frameshifting, enable H. pylori to produce variable LPS epitopes on its surface. These new findings have provided us with a basis to further examine the roles of molecular mimicry and phase variation of H. pylori Lewis antigen expression in both persistent infection and pathogenesis of this important human gastric pathogen.  相似文献   

14.
This study describes the molecular makeup of the cell-wall lipopolysaccharides (LPSs) (O-chain polysaccharide-->core oligosaccharide-->lipid A) from five Helicobacter pylori strains: H. pylori 26695 and J99, the complete genome sequences of which have been published, the established mouse model Sydney strain (SS1), and the symptomatic strains P466 and UA915. All chemical and serological experiments were performed on the intact LPSs. H. pylori 26695 and SS1 possessed either a low-Mr semi-rough-form LPS carrying mostly a single Ley type-2 blood-group determinant in the O-chain region covalently attached to the core oligosaccharide or a high-Mr smooth-form LPS, as did strain J99, with an elongated partially fucosylated type-2 N-acetyllactosamine (polyLacNAc) O-chain polymer, terminated mainly by a Lex blood-group determinant, connected to the core oligosaccharide. In the midst of semi-rough-form LPS glycoforms, H. pylori 26695 and SS1 also expressed in the O-chain region a difucosylated antigen, alpha-L-Fucp(1-3)-alpha-L-Fucp(1-4)-beta-D-GlcpNAc, and the cancer-cell-related type-1 or type-2 linear B-blood-group antigen, alpha-D-Galp(1-3)-beta-D-Galp(1-3 or 4)-beta-D-GlcpNAc. The LPS of H. pylori strain P466 carried the cancer-associated type-2 sialyl Lex blood-group antigen, and the LPS from strain UA915 expressed a type-1 Leb blood-group unit. These findings should aid investigations that focus on identifying and characterizing genes responsible for LPS biosynthesis in genomic strains 26695 and J99, and in understanding the role of H. pylori LPS in animal model studies. The LPSs from the H. pylori strains studied to date were grouped into specific glycotype families.  相似文献   

15.
16.
The O-antigen chain from the lipopolysaccharide of Helicobacter pylori strain UA861 was determined to be composed of an elongated type 2 N - acetyllactosamine backbone, -[-->3)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-(1- ]n-->, with approximately half of the GlcNAc units carrying a terminal alpha-d-Glc residue at the O -6 position. The O-chain of H.pylori UA861 was terminated by a N -acetyllactosamine [beta-D-Gal-(1-->4)-beta-D- GlcNAc] (LacNAc) epitope and did not express terminal Lewis X or Lewis Y blood-group determinants as previously found in other H.pylori strains. The absence of terminal Lewis X and Lewis Y blood-group epitopes and the replacement of Fuc by Glc as a side chain in the O- chain of H.pylori UA861 represents yet another type of lipopolysaccharide structure from H.pylori species. These structural differences in H.pylori lipopolysaccharide molecules carry implications with regard to possible different pathogenic events between strains and respective hosts.   相似文献   

17.
Lipopolysaccharides (LPSs) from strains of Helicobacter pylori (442 and 471), which differed in stimulation of pepsinogen secretion, were isolated as water-soluble material of high-M(r), and as water-insoluble gels of low-M(r). Chemical and spectroscopic analyses of soluble LPS and oligosaccharides liberated from the gels led to proposed structures with Lewis (Le) antigen termini connected to N -acetyllacto-saminoglycans of alternating 3-linked beta-D-Gal and 4-linked beta-D-GlcNAc residues with various laterally attached glycosyl substituents. The LPS of H.pylori 442 was similar to previously examined strains (NCTC 11637 and P466) in having partially glycosylated chains with alpha-L-Fuc units attached to O-3 of the majority of GlcNAc residues in Le(x)units, and in chain termination with Le(x)or Le(y)determinants. In contrast, terminal Le(y)units occurred in LPS of H.pylori 471 and glycosaminoglycan chains carried a smaller proportion of alpha-L-Fuc units, but at O-6 of a majority of nonfucosylated GlcNAc residues, there was a novel type of branching with alpha-D-Gal substituents. Evidence for the branched regions was obtained from(1)H-NMR spectra and from characterization of oligosaccharides formed by the action of endo-beta-galactosidase. Examination of oligosaccharides liberated from water-insoluble LPS gels of H.pylori 442 and 471 provided evidence for similar core OS structures to those from other H.pylori strains but interesting differences were observed.  相似文献   

18.
Many microbes bind and adhere via adhesins to host cell carbohydrates as an initial step for infection. Therefore, cell lines expressing Lewis b (Le(b)) determinants were generated as a potential model system for Helicobacter pylori colonization and infection, and their expression of blood group Lewis determinants was characterized. CHO-K1 cells were stably transfected with selected glycosyltransferase cDNAs, and two Le(b) positive clones, 1C5 and 2C2, were identified. Expression of Lewis (Le(a), Le(b), Le(x), and Le(y)) determinants was analyzed by flow cytometry of intact cells, SDS-PAGE/Western blot of solubilized glycoproteins, and thin layer chromatography immunostaining of isolated glycolipids (GL). Binding of H. pylori to cells was examined by microscopy and quantified. Flow cytometry showed that 1C5 and 2C2 were Le(a) and Le(b) positive. 1C5 expressed Le(b) on O-linked, but not N-linked, glycans and only weakly on GLs. In contrast, 2C2 expressed Le(b) on N-, O-glycans, and GLs. Furthermore, both clones expressed Le(a) on N- and O-glycans but not on GLs. 2C2, but not 1C5, stained positively for Le(y) on N-linked glycans and GLs. Both clones, as well as the parental CHO-K1 cells, expressed Le(x) on GLs. A Le(b)-binding H. pylori strain bound to the 1C5 and 2C2 cells. In summary, two glycosyltransferase transfected CHO-K1 cell clones differed regarding Lewis antigen expression on N- and O-linked glycans as well as on GLs. Both clones examined supported adhesion of a Le(b)-binding H. pylori strain and may thus be a useful in vitro model system for H. pylori colonization/infection studies.  相似文献   

19.
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.  相似文献   

20.
Background. We have investigated the possibility that the same patients may be colonized by Helicobacter pylori strains of different genotypes or phenotypes in the antrum as compared to in the duodenum. The strains were typed for DNA fingerprints, different lipopolysaccharides (LPS), and Lewis antigen expression on the O –side chains of LPS.
Materials and Methods. Polymerase chain reaction (PCR) amplifications using primer sequences (i.e., the Enterobacterial Repetitive Intergenic Consensus [ERIC]) and randomly amplified polymorphic DNA (RAPD) elements were performed to asses chromosomal DNA diversity between H. pylori strains. The expression of different LPS types and Lewis antigens in the various H. pylori isolates were determined by whole bacterial enzyme-linked immunosorbent assays using monoclonal antibodies.
Results. Duodenal ulcer patients had different H. pylori genotypes in the duodenum as compared to in the antrum as shown by ERIC-PCR (44%) and by RAPD-PCR (75%). Different DNA patterns were found among the strains that were isolated from various regions of the duodenum in 4 of 16 patients (25%) as shown by ERIC-PCR and in 8 of 16 patients (50%) as shown by RAPD-PCR. Sixty-three percent of the duodenal ulcer patients had H. pylori strains with a different Lewis antigen phenotype in the duodenum as compared to in the antrum, and 3 of 16 patients (19%) had strains with different Lewis antigens expressed by strains from different duodenal biopsies from the same patient.
Conclusion. The results suggest that a mixed population of different H. pylori strains with marked variation, both genotypically and phenotypically, colonize the same patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号