共查询到20条相似文献,搜索用时 0 毫秒
1.
Sam Mathew Giyoung Shin Minsu Shon Hyungdon Yun 《Biotechnology and Bioprocess Engineering》2013,18(1):1-7
Recently, ω-transaminases have been increasingly used to synthesize amine compounds by reductive amination of prochiral ketones which are of high pharmacological significance. However, the conventional methods for evaluating these enzymes are time consuming and have often been regarded as a bottle neck in developing these enzymes as industrial biocatalysts. In the past few years, several high throughput screening methods have been developed for fast evaluation and identification of ω-transaminase. This review summarizes the various methodologies developed for rapidly screening ω-transaminases. 相似文献
2.
Chiral amines in enantiopure forms are important chemical building blocks, which are most well recognized in the pharmaceutical industries for imparting desirable biological activity to chemical entities. A number of synthetic strategies to produce chiral amines via biocatalytic as well as chemical transformation have been developed. Recently, ω-transaminase (ω-TA) has attracted growing attention as a promising catalyst which provides an environment-friendly access to production of chiral amines with exquisite stereoselectivity and excellent catalytic turnover. To obtain enantiopure amines using ω-TAs, either kinetic resolution of racemic amines or asymmetric amination of achiral ketones is employed. The latter is usually preferred because of twofold higher yield and no requirement of conversion of a ketone product back to racemic amine. However, the choice of a production process depends on several factors such as reaction equilibrium, substrate reactivity, enzyme inhibition, and commercial availability of substrates. This review summarizes the biochemical features of ω-TA, including reaction chemistry, substrate specificity, and active site structure, and then introduces recent advances in expanding the scope of ω-TA reaction by protein engineering and public database searching. We also address crucial factors to be considered for the development of efficient ω-TA processes. 相似文献
3.
《FEBS letters》2014,588(9):1603-1607
α-Isopropylmalate synthase (IPMS) catalyses the reaction between α-ketoisovalerate and acetyl coenzyme A (AcCoA) in the first step of leucine biosynthesis. IPMS is closely related to homocitrate synthase, which catalyses the reaction between AcCoA and the unbranched α-ketoacid α-ketoglutarate. Analysis of these enzymes suggests that several differently conserved key residues are responsible for the different substrate selectivity. These residues were systematically substituted in the Mycobacterium tuberculosis IPMS, resulting in changes in substrate specificity. A variant of IPMS was constructed with a preference for the unbranched α-ketoacids α-ketobutyrate and pyruvate over the natural branched substrate α-ketoisovalerate. 相似文献
4.
ω-Transaminase (ω-TA) is the only naturally occurring enzyme allowing asymmetric amination of ketones for production of chiral amines. The active site of the enzyme was proposed to consist of two differently sized substrate binding pockets and the stringent steric constraint in the small pocket has presented a significant challenge to production of structurally diverse chiral amines. To provide a mechanistic understanding of how the (S)-specific ω-TA from Paracoccus denitrificans achieves the steric constraint in the small pocket, we developed a free energy analysis enabling quantification of individual contributions of binding and catalytic steps to changes in the total activation energy caused by structural differences in the substrate moiety that is to be accommodated by the small pocket. The analysis exploited kinetic and thermodynamic investigations using structurally similar substrates and the structural differences among substrates were regarded as probes to assess how much relative destabilizations of the reaction intermediates, i.e. the Michaelis complex and the transition state, were induced by the slight change of the substrate moiety inside the small pocket. We found that ≈80% of changes in the total activation energy resulted from changes in the enzyme-substrate binding energy, indicating that substrate selectivity in the small pocket is controlled predominantly by the binding step (KM) rather than the catalytic step (kcat). In addition, we examined the pH dependence of the kinetic parameters and the pH profiles of the KM and kcat values suggested that key active site residues involved in the binding and catalytic steps are decoupled. Taken together, these findings suggest that the active site residues forming the small pocket are mainly engaged in the binding step but not significantly involved in the catalytic step, which may provide insights into how to design a rational strategy for engineering of the small pocket to relieve the steric constraint toward bulky substituents. 相似文献
5.
Johnny Lisboa Jessica Andreani Dyana Sanchez Marion Boudes Bruno Collinet Dominique Liger Herman van Tilbeurgh Raphael Guérois Sophie Quevillon-Cheruel 《Nucleic acids research》2014,42(11):7395-7408
Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, DprAM238 and RecAF230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA−RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA. 相似文献
6.
Sehl T Simon RC Hailes HC Ward JM Schell U Pohl M Rother D 《Journal of biotechnology》2012,159(3):188-194
A rapid TTC-based screening assay for ω-transaminases was developed to determine the conversion of substrates with a 2-hydroxy ketone motif. Oxidation of the compounds in the presence of 2,3,5-triphenyltetrazolium chloride (TTC) results in a reduction of the colourless TTC to a red-coloured 1,3,5-triphenylformazan. The enzymatic reductive amination of a wide range of various aliphatic, aliphatic-aromatic and aromatic-aromatic 2-hydroxy ketones can be determined by the decrease of the red colouration due to substrate consumption. The conversion can be quantified spectrophotometrically at 510 nm based on reactions, e.g. with crude cell extracts in 96-well plates. Since the assay is independent of the choice of diverse amine donors a panel of ω-transaminases was screened to detect conversion of 2-hydroxy ketones with three different amine donors: l-alanine, (S)-α-methylbenzylamine and benzylamine. The results could be validated using HPLC and GC analyses, showing a deviation of only 5-10%. Using this approach enzymes were identified demonstrating high conversions of acetoin and phenylacetylcarbinol to the corresponding amines. Among these enzymes three novel wild-type ω-transaminases have been identified. 相似文献
7.
A. I. Osipyants N. A. Smirnova A. Yu. Khristichenko D. M. Hushpulian S. V. Nikulin T. A. Chubar A. A. Zakhariants V. I. Tishkov I. G. Gazaryan A. A. Poloznikov 《Biochemistry. Biokhimii?a》2017,82(10):1207-1214
An organism naturally responds to hypoxia via stabilization of hypoxia-inducible factor (HIF). There are three isoforms of HIFα subunits whose stability is regulated by three isozymes of HIF prolyl hydroxylase (PHD1-3). Despite intense studies on recombinant enzyme isoforms using homogeneous activity assay, there is no consensus on the PHD iso-form preference for the HIF isoform as a substrate. This work provides a new approach to the problem of substrate specificity using cell-based reporters expressing the enzyme and luciferase-labeled substrate pair encoded in the same expression vector. The cell is used as a microbioreactor for running the reaction between the overexpressed enzyme and substrate. Using this novel approach, no PHD3 activity toward HIF3 was demonstrated, indirectly pointing to the hydroxylation of the second proline in 564PYIP567 (HIF1) catalyzed by this isozyme. The use of “paired” enzyme–substrate reporters to evaluate the potency of “branched tail” oxyquinoline inhibitors of HIF PHD allows higher precision in revealing the optimal structural motif for each enzyme isoform. 相似文献
8.
9.
Dong-Hyuk Chun 《Molecular simulation》2013,39(9):837-844
The hydrogen capacity of the binary THF–H2 sII hydrate is determined by the cage occupancy and by the selectivity of guest molecules. Grand canonical Monte Carlo (GCMC) simulation is used to study the cage occupancy and selectivity of guest molecules from the equilibrium configuration of the binary sII hydrate. The cage framework is regarded as a rigid body and the number of guest molecules is varied to preserve the grand canonical ensemble. The occupancy and selectivity were investigated at a temperature of 270 K for pressures ranging from 0.1 to 200 MPa. It was found that most large cages select THF as guest molecules while small cages include only hydrogen molecules. Multiple occupancy of hydrogen, up to four molecules in large cages and two molecules in small cages, was found as the pressure increases. GCMC results show that the hydrogen capacity is approximately 1.1 wt% at 200 MPa. 相似文献
10.
《Bioorganic & medicinal chemistry》2014,22(20):5558-5562
Valinol is part of numerous pharmaceuticals and has various other important applications. Optically pure valinol (ee >99%) was prepared employing different ω-transaminases from the corresponding prochiral hydroxy ketone. By the choice of the enzyme the (R)- as well as the (S)-enantiomer were accessible. Reductive amination was performed in organic solvent (MTBE) using 2-propyl amine as amine donor whereas alanine was applied in or in aqueous medium. Transformations in phosphate buffer were successfully performed even at 200 mM substrate concentration (20.4 g/L) leading to 99% (R) and 94% (S) conversion with perfect optical purity (>99% ee). 相似文献
11.
Chiung-Kuang J. Chen Robert E. Berry Tatjana Kh. Shokhireva Marat B. Murataliev Hongjung Zhang F. Ann Walker 《Journal of biological inorganic chemistry》2010,15(2):159-174
CYP102A1 is a highly active, water-soluble, bacterial monooxygenase enzyme that contains both substrate-binding heme and diflavin
reductase subunits, both in a single polypeptide. Recently we developed a procedure which uses the known structure of the
substrate-bound heme domain of CYP102A1 and its sequence homology with a cytochrome P450 of unknown structure, both of which
react with a common substrate but produce different products, to create recombinant enzymes which have substrate selectivity
different from that of CYP102A1, and produce the product of the enzyme of unknown structure. Insect CYP4C7, a terpene hydroxylase
from the cockroach, was chosen as the cytochrome P450 of unknown structure, and farnesol was chosen as the substrate. CYP102A1
oxidizes farnesol to three products (2,3-epoxyfarnesol, 10,11-epoxyfarnesol, and 9-hydroxyfarnesol), whereas CYP4C7 produces
12-hydroxyfarnesol as the major product. In earlier work it was found that the chimera C(78-82,F87L) showed a change in substrate
selectivity from fatty acids to farnesol, and was approximately sixfold more active than wild-type CYP102A1 (Chen et al. in
J Biol Inorg Chem 13:813–824, 2008), but neither it nor any other earlier chimera produced 12-hydroxyfarnesol. In this work we added amino acid residues 327–332,
to create six new full-length, functional chimeric proteins. Four of these, the most active of which was C(78-82,F87L,328-330),
produce 12-hydroxyfarnesol as the major product, with approximately twofold increase in turnover number as compared with wild-type
CYP102A1 toward farnesol. Methylfarnesoate was metabolized to 12-hydroxymethylfarnesoate (70%) and 10,11-epoxymethylfarnesoate
(juvenile hormone III) (30%). The latter is metabolized to 65% 12-hydroxy-10,11-epoxymethylfarnesoate and 35% 15-hydroxy-10,11-epoxymethylfarnesoate.
Substitution of residues 328–330, APA, by VPL was crucial to accomplishing this change in product. 相似文献
12.
The crystal structures of both isoforms of the aminoaldehyde dehydrogenase from pea (PsAMADH) have been solved recently [Tylichováet?al. (2010) J Mol Biol396, 870-882]. The characterization of the PsAMADH2 proteins, altered here by site-directed mutagenesis, suggests that the D110 and D113 residues at the entrance to the substrate channel are required for high-affinity binding of ω-aminoaldehydes to PsAMADH2 and for enzyme activity, whereas N162, near catalytic C294, contributes mainly to the enzyme's catalytic rate. Inside the substrate cavity, W170 and Y163, and, to a certain extent, L166 and M167 probably preserve the optimal overall geometry of the substrate channel that allows for the appropriate orientation of the substrate. Unconserved W288 appears to affect the affinity of the enzyme for the substrate amino group through control of the substrate channel diameter without affecting the reaction rate. Therefore, W288 may be a key determinant of the differences in substrate specificity found among plant AMADH isoforms when they interact with naturally occurring substrates such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. 相似文献
13.
Sex-linked determinants for IgM? 总被引:1,自引:0,他引:1
Evidence for a sex-linked determinant of immunoglobulin M levels was sought using correlational and commingling analyses in a sample of 174 randomly selected nuclear families. While mean IgM levels in females were approximately 25% higher than that in males, the pattern of familial correlations did not follow the expectations under a sex-linked model, and there was no commingling in the distribution of IgM levels as expected when a trait is under the influence of a major gene. 相似文献
14.
Kevin M Pegg Eleanor M Liu Alex C George Alecander E LaCuran Christopher R Bethel Robert A Bonomo Peter Oelschlaeger 《Protein science : a publication of the Protein Society》2014,23(10):1451-1460
In Gram-negative bacteria, resistance to β-lactam antibacterials is largely due to β-lactamases and is a growing public health threat. One of the most concerning β-lactamases to evolve in bacteria are the Class B enzymes, the metallo-β-lactamases (MBLs). To date, penams and cephems resistant to hydrolysis by MBLs have not yet been found. As a result of this broad substrate specificity, a better understanding of the role of catalytically important amino acids in MBLs is necessary to design novel β-lactams and inhibitors. Two MBLs, the wild type IMP-1 with serine at position 262, and an engineered variant with valine at the same position (IMP-1-S262V), were previously found to exhibit very different substrate spectra. These findings compelled us to investigate the impact of a threonine at position 262 (IMP-1-S262T) on the substrate spectrum. Here, we explore MBL sequence-structure-activity relationships by predicting and experimentally validating the effect of the S262T substitution in IMP-1. Using site-directed mutagenesis, threonine was introduced at position 262, and the IMP-1-S262T enzyme, as well as the other two enzymes IMP-1 and IMP-1-S262V, were purified and kinetic constants were determined against a range of β-lactam antibacterials. Catalytic efficiencies (kcat/KM) obtained with IMP-1-S262T and minimum inhibitory concentrations (MICs) observed with bacterial cells expressing the protein were intermediate or comparable to the corresponding values with IMP-1 and IMP-1-S262V, validating the role of this residue in catalysis. Our results reveal the important role of IMP residue 262 in β-lactam turnover and support this approach to predict activities of certain novel MBL variants. 相似文献
15.
Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S. 相似文献
16.
Sarah E. Wilkins Jaana Hyvärinen Johana Chicher Jeffrey J. Gorman Daniel J. Peet Rebecca L. Bilton Peppi Koivunen 《The international journal of biochemistry & cell biology》2009,41(7):1563-1571
FIH-1, factor inhibiting hypoxia-inducible factor-1 (HIF-1), regulates oxygen sensing by hydroxylating an asparagine within HIF-α. It also hydroxylates asparagines in many proteins containing ankyrin repeats, including Notch1–3, p105 and IκBα. Relative binding affinity and hydroxylation rate are crucial determinants of substrate selection and modification. We determined the contributions of substrate sequence composition and length and of oxygen concentration to the FIH-1-binding and/or hydroxylation of Notch1–4 and compared them with those for HIF-1α. We also demonstrated hydroxylation of two asparagines in Notch2 and 3, corresponding to Sites 1 and 2 of Notch1, by mass spectrometry for the first time.Our data demonstrate that substrate length has a much greater influence on FIH-1-dependent hydroxylation of Notch than of HIF-1α, predominantly through binding affinity rather than maximal reaction velocity. The Km value of FIH-1 for Notch1, <0.2 μM, is at least 250-fold lower than that of 50 μM for HIF-1α. Site 1 of Notch1–3 appeared the preferred site of FIH-1 hydroxylation in these substrates. Interestingly, binding of Notch4 to FIH-1 was observed with an affinity almost 10-fold lower than for Notch1–3, but no hydroxylation was detected. Importantly, we demonstrate that the Km of FIH-1 for oxygen at the preferred Site 1 of Notch1–3, 10–19 μM, is an order of magnitude lower than that for Site 2 or HIF-1α. Hence, at least during in vitro hydroxylation, Notch is likely to become efficiently hydroxylated by FIH-1 even under relatively severe hypoxic conditions, where HIF-1α hydroxylation would be reduced. 相似文献
17.
18.
An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6–10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6–C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6–C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6–C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media. 相似文献
19.
Chaya Pooput Erica Rosemond Joel Karpiak Francesca Deflorian Santiago Vilar Stefano Costanzi Jürgen Wess Kenneth L. Kirk 《Bioorganic & medicinal chemistry》2009,17(23):7987-7992
The important and diverse biological functions of adrenergic receptors, a subclass of G protein-coupled receptors (GPCRs), have made the search for compounds that selectively stimulate or inhibit the activity of different adrenergic receptor subtypes an important area of medicinal chemistry. We previously synthesized 2-, 5-, and 6-fluoronorepinehprine (FNE) and 2-, 5-, and 6-fluoroepinephrine (FEPI) and found that 2FNE and 2FEPI were selective β-adrenergic agonists and that 6FNE and 6FEPI were selective α-adrenergic agonists, while 5FNE and 5FEPI were unselective. Agonist potencies correlated well with receptor binding affinities. Here, through a combination of molecular modeling and site-directed mutagenesis, we have identified N293 in the β2-adrenergic receptor as a crucial residue for the selectivity of the receptor for catecholamines fluorinated at different positions. 相似文献
20.
Molecular Basis for Repressor Activity of Qβ Replicase 总被引:12,自引:0,他引:12
H. WEBER M. A. BILLETER S. KAHANE C. WEISSMANN J. HINDLEY A. PORTER 《Nature: New biology》1972,237(75):166-170
WITH the purification and characterization of viral replicases, a novel feature of nucleic acid polymerases—stringent template specificity—was recognized1,2. Qβ replicase, the most extensively studied viral RNA polymerase2–8, is now known to replicate Qβ RNA2, the complementary Qβ minus strand9, RNA molecules described as “variants” of Qβ RNA10,11 and a set of small RNAs of unknown origin which accumulate in Qβ-infected Escherichia coli, collectively designated as “6S RNA”12. On the other hand, the RNA from phages related distantly, if at all, to Qβ13,14, such as MS2 or R17 and of other viruses such as TMV2 or AMV (Diggelmann and Weissmann, unpublished results) are completely inert as templates, as are ribosomal and tRNA from E. coli2. Poly C and C-rich synthetic copolymers at high concentrations elicit synthesis which, however, remains restricted to the formation of a strand complementary to the template15,16. 相似文献