首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
A population survey of phytoseiid mites and spider mites was conducted on peach leaves and wild plants in Japanese peach orchards having different pesticide practices. The phytoseiid mite species composition on peach leaves and wild plants, as estimated using quantitative sequencing, changed during the survey period. Moreover, it varied among study sites. The phytoseiid mite species compositions were similar between peach leaves and some wild plants, such as Veronica persica, Paederia foetida, Persicaria longiseta, and Oxalis corniculata with larger quantities of phytoseiid mites, especially after mid-summer. A PCR-based method to detect the ribosomal ITS sequences of Tetranychus kanzawai and Panonychus mori from phytoseiid mites was developed. Results showed that Euseius sojaensis (specialized pollen feeder/generalist predator) uses both spider mites as prey in the field.  相似文献   

2.
A population survey of spider mites and phytoseiid mites was conducted on Japanese pear leaves in a greenhouse. For the survey, the method to estimate phytoseiid mite species composition using quantitative sequencing was modified to be applicable for phytoseiid mite species inhabiting in the greenhouse. Results show the dominant appearance of Neoseiulus californicus (McGregor), Neoseiulus womersleyi (Schicha), and Neoseiulus makuwa (Ehara) from the end of June to late September and their contribution in spider mite control. PCR-based method to detect the ribosomal internal transcribed spacer (ITS) sequences of spider mites from phytoseiid mites was developed. The method shows sensitivity to detect the ITS sequences of Tetranychus urticae Koch from single N. californicus adult at 168 h after ingestion of the spider mite. PCR-based method to detect the cytochrome c oxidase subunit I sequences of several arthropod pests belonging to Hemiptera, Thysanoptera, and Acari from phytoseiid mites was also developed. Results show that phytoseiid mites prey on Eriophyes chibaensis (Kadono) and Aphis gossypii (Glover), in addition to spider mites.  相似文献   

3.
We compared the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) banding patterns obtained from four laboratory cultures representing three phytoseiid mite species (Typhlodromalus limonicus (Garman and McGregor), two cultures of Typhlodromalus manihoti (de Moraes) and Typhlodromalus tenuiscutus (McMurtry and de Moraes). The RAPD-PCR was conducted on the pooled DNA from five adult female mites. For each culture, three samples of five females were analysed with each of eight RAPD-PCR primers. Five of the eight primers could be used individually to distinguish the species. To quantify the within- and between-species variation, genetic distances were calculated based on the proportion of shared scorable bands. The within-species genetic distances (0.072-0.186) were much lower than the between-species genetic distances (0.407-0.656). We believe that this technique could be used effectively to identify other cryptic mite species.  相似文献   

4.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

5.
Chuleui Jung  Brian A. Croft 《Oikos》2001,94(1):182-190
Aerial dispersal is important to immigration and redistribution of phytoseiid mites that often can provide biological control of spider mite pests. Falling speed of a mite and wind largely determine dispersal distance of such a passively blown organism. A diffusion model of wind-blown phytoseiids could provide insight into their dispersal. To this end, we measured body weights and falling speeds of adult females of 13 phytoseiid and one tetranychid mite species. These data were then incorporated into seed dispersal models (Greene and Johnson, Okubo and Levin) and results were compared to mite dispersal distances in wind tunnel, greenhouse and field. Weights of phytoseiid species ranged from 5.25 to 2l.7 μg; starved mites weighed less than fed mites. Geometric diameters ( d g ) of idiosomas were correlated to weights. Falling speeds for phytoseiids were 0.39–0.73 m/s, and less than for T. urticae (0.79 m/s) in still air. In some species, active mites had slower falling speeds than inactive (anesthetized) mites indicating that behavior may influence falling. Starved mites had significantly slower falling speeds than fed mites and dispersed farther. Equation-based estimates of falling speed were close to measured ones (2–8% deviation) for some species. There were significant relationships between falling speed and body weight and morphological traits. Greene and Johnson's seed dispersal model provided better fits to dispersal of mites in the wind tunnel, greenhouse and field studies than Okubo and Levin's model. Limits of models in describing mite dispersal distance and applications to IPM are discussed.  相似文献   

6.
The phytoseiid mites Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Schueten are used together and alone as biological control agents against tetranychid pest mites of apple. Their effectiveness as control agents may be impacted by intraguild predation. The effects of prey species and prey density on the rates of inter- and intraspecific predation and oviposition by these two predators were investigated through a series of experiments. Adult female predators were given prey as mixed populations of phytoseiid larvae and larvae of a more preferred species, the spider mite, Tetranychus urticae Koch, at different densities and ratios. Typhlodromus pyri, more of a generalist predator, showed higher rates of predation and cannibalism on phytoseiid immatures at most prey densities and ratios. Manly preference indices indicated that T. pyri switched to feed on phytoseiid larvae at higher prey levels and ratios of T. urticae than M. occidentalis. This greater ability to use phytoseiid larvae as prey may help stabilize T. pyri populations when more preferred prey is unavailable. This may, in part, explain the observed persistence of T. pyri populations when M. occidentalis populations were decreasing in orchard test plots.  相似文献   

7.
This study reports (1) a faunistic survey of phytoseiid mites observed inside a vine plot and in neighbouring vegetation (other vine plots and uncultivated areas) and (2) dispersal of phytoseiid mites into the plot studied. These data aim to raise some hypotheses concerning natural colonisation of a vineyard by predatory mites. The study was carried out over 3 years (1999, 2000 and 2001) in an experimental plot planted with two cultivars (Grenache and Syrah) and with Sorbus domestica in a framework of agroforestry investigations. Phytoseiid mites were collected in both cultivated and uncultivated areas surrounding the experimental plot, and their dispersal into the plot studied using “aerial” traps. Densities remained quite low compared to previous studies. The main species encountered in the uncultivated areas and in the traps was Typhlodromus phialatus. Despite the low numbers of phytoseiid mites trapped, densities of phytoseiid mites into the vine field increased during 3 years. Typhlodromus phialatus, the species mainly found in the neighbouring uncultivated areas, was rarely found in vineyards. Another morphologically close species was predominant on vines: Typhlodromus exhilaratus. However, Kampimodromus aberrans the main phytoseiid mite species in vineyards of Southern France was not found in the present survey. Hypotheses for this colonisation process are discussed.  相似文献   

8.
A natural increase of phytoseiid mite populations (Kampimodromus aberrans, Typhlodromus pyri and Phytoseius plumifer) was observed in vineyards in Languedoc, Burgundy and Corsica under integrated pest management strategies. The aim of the present study was to characterize the mechanisms of this colonization in space and time in Languedoc. The abundance of phytoseiid mites in the vegetation close to three grape fields was determined twice a year (May and July). Aerial (funnels with water) and soil (felt strip) traps were placed in and around grape fields, in order to assess the colonization potential provided by aerial dispersal and ambulatory locomotion. The populations of phytoseiid mites in the crops were studied twice a month in order to gain information on the make up of the dispersal populations. The species K. aberrans was found in largest quantities in the traps, in the natural vegetation and in the crops. Predatory mite dispersal occurred essentially by aerial dispersal and was dependent on the wind intensity and wind direction. Identical sex ratios were observed in migrant populations and in populations present in the grape fields, woody areas and hedges. A large proportion of immatures was found to move by aerial dispersal. The colonization potential (rapidity, intensity and regularity) was directly associated with the abundance of the phytoseiids and the proximity of natural vegetation. A deep, dense and tall woody area containing suitable host plants for predatory mites constituted the most stable source of phytoseiid mites. Natural colonization of vineyards provides considerable phytoseiid mite potential that could be managed in an agricultural landscape.  相似文献   

9.
The effect of wind and woody margins on the dispersal and population dynamics of phytoseiid mites was studied in a vine plot for a period of two years. Mites were sampled in the plot and in the surrounding vegetation (crops and natural vegetation) in order to determine phytoseiid mite abundance. The surrounding vegetation was considered to be a reservoir of phytoseiids from where the vine plot could be invaded. Directional and non-directional soil and aerial traps were placed in the plot to determine predatory mite exchange between the two areas. Colonization of the plot occurred in two stages: first, mite migration into the plot, followed by their establishment. The two-year study partially clarified the first of these two stages. Kampimodromus aberrans was the main species caught in the aerial traps. Phytoseiid mite dispersal within the vine plot seemed to be affected by both wind (direction, intensity and regularity) and phytoseiid mite density in the woody margin. However, the woody margin had a large effect only over a short distance. Some observations pointed towards an effect of other reservoir areas but it was not possible to characterize these. The population density of the phytoseiid mites in the plot increased from 1996 to 1998, but these increases are much smaller than one would expect on the basis of the number of mites migrating by air in the plot. Moreover, blocks where most mites were trapped were not the blocks where densities of phytoseiid mites on vine leaves were the largest. It therefore seems likely that not all migrants were able to develop. Their settlement pattern was not determined and this could constitute a potential research focus for the future.  相似文献   

10.
中国植绥螨资源及其生物学研究进展   总被引:5,自引:0,他引:5  
唐斌  张帆  陶淑霞  熊继文 《昆虫知识》2004,41(6):527-531
植绥螨是许多害螨和小型有害昆虫的重要捕食性天敌 ,在农业生产中极具利用价值。我国植绥螨资源相当丰富 ,大量的资源调查工作是在 2 0世纪 70年代末开始的。到目前为止 ,我国已经从不同地区作物上鉴定出植绥螨 2 60余种 ,其中有利用价值的约 2 0种左右。在 2 5~ 3 0℃的适宜温度下 ,植绥螨从卵到羽化为成螨约需 6~ 7d ,而寿命能长达 3 0~ 5 0d。它们对大多数的害螨的功能反应基本成HollingⅡ型。多数成螨为喜湿类型 ,较高的湿度对于孵化和存活尤为重要。在夏季高温和冬季低温来临时进行越夏和越冬 ,以度过不良的环境。植绥螨行两性生殖 ,不交配或交配时间不够 ,不产卵或少产 ,有些种类需要多次交配才能完全产卵。  相似文献   

11.
Amplifying microbial DNA by the polymerase chain reaction (PCR) from single phytoseiid mites has been difficult, perhaps due to the low titer of bacteria and to interference by the relatively larger amounts of mite genomic DNA. In this paper we evaluate the efficiency of standard and high-fidelity PCR protocols subsequent to amplification of the whole genome by a multiple displacement amplification (MDA) procedure developed by Dean et al. DNA from the phytoseiid Phytoseiulus persimilis (Athias-Henriot) was tested because it lacks a Cytophaga-like organism (CLO) and we could add known amounts of a plasmid containing a cloned 16S rRNA gene fragment from a CLO from Metaseiulus occidentalis (Nesbitt). P. persimilis genomic DNA was mixed with the serially diluted plasmid and amplified using MDA followed by either standard or high-fidelity PCR. MDA followed by high-fidelity PCR was most efficient and successfully amplified an expected 1.5-kb band from as little as 0.01fg of the plasmid, which is equivalent to about 1 copy. MDA followed by high-fidelity PCR also consistently amplified Wolbachia- or CLO-specific products from naturally infected single females or eggs of M. occidentalis, which will allow detailed studies of infection frequency and transmission of several microorganisms associated with this predatory mite.  相似文献   

12.
13.
Ribosomal DNA from Cecidophyopsis mites from different Ribes species was amplified using the polymerase chain reaction and the products digested using restriction enzymes. After separating the DNA fragments on gels, it was possible to identify specimens of mites obtained from field samples by comparing the profiles of their DNA banding patterns with those of known Cecidophyopsis species. Using this analysis, a non-gall forming mite found infesting blackcurrant buds in New Zealand was identified as the gooseberry mite (C. grossulariae). On wild red currant (Ribes spicatum) from Finland showing two sizes of galled buds, the red currant gall mite (C. selachodon) was identified in the larger galls located at the tips of branches and a distinct mite in the smaller galls located on the lower parts of the branches. A mite with a DNA banding profile indistinguishable from this latter mite from R. spicatum was also identified in galled buds of blackcurrant genotypes growing in Finland, including those containing the blackcurrant gall mite (C. n'ftw)-resistance genes P or Ce. The DNA banding profile of this mite resembled most closely that of C. ribis , but was distinct from it. The occurrence of C. grossulariae and this distinct Cecidophyopsis mite on blackcurrant has implications for the genetic control of Cecidophyopsis mites and possibly for the spread of the reversion disease agent in this crop.  相似文献   

14.
Reproductive success and population growth of an herbivorous mite are limited by activities of phytoseiid predators. However, occurrences on upper versus lower leaf surfaces are sometimes mismatched between these prey and predators. The mismatch potentially mitigates predation risk for the prey species. We assessed factors that affect mite distributions on leaf surfaces, testing whether the presence of the phytoseiid mite Phytoseius nipponicus alters the leaf-surface distribution and reproductive success of the herbivorous false spider mite Brevipalpus obovatus. The host plant was Viburnum erosum var. punctatum (Adoxaceae). Leaves were set in natural (TRUE) and reversed (upside down; INVERTED) orientations using experimental devices. Both surfaces were accessible to mites. We detected lower and abaxial leaf-surface preferences in P. nipponicus. In contrast, upper and adaxial surfaces were preferred by B. obovatus. Thus, prey and predatory mites accumulated on different sides of leaves. Presence of the predator also indirectly decreased egg production in B. obovatus. Brevipalpus obovatus females actively avoided leaf surfaces with elevated predator numbers; these females shifted their distributions and changed oviposition sites to leaf surfaces with fewer predators. In consequence, B. obovatus eggs on the upper sides of leaves were less frequently preyed upon than were those on lower sides. We suggest that upper leaf-surface exploitation in this particular herbivorous mite species mitigates predation risk from phytoseiid mites, which prefer lower leaf surfaces.  相似文献   

15.
《Journal of Asia》2005,8(1):87-91
Overwintering mite diversity and their habitats were studied in apple and pear orchards during 2002-2003 winter season. Twospotted spider mite was mostly found under the tree barks and fabric strips. European red mites were from crevices of twigs. Tydeid, tarsonemid and oribatid mites were mostly from soil and ground vegetation. Even in the protected overwintering habitat such as artificial fabric strip, twospotted spider mite suffered 81-91% mortality during winter. Predaceous phytoseiid mites found were Amblyseius womersleyi, A. makuwa, A. orientalis, A. rademacheri A. obtuserellus, and A. eharai. Amblyseius womersleyi was the most dominant species in both apple and pear orchards, followed by A. obtuserrellus in apple orchards and A. makuwa in pear orchards. Most phytoseiid mites were found on ground vegetation while their potential prey items were remained on the tree. Implication of the findings for conservation of beneficial mites and biological control of spider mite during season was further discussed.  相似文献   

16.
Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2?×?10(2) to 1.4?×?10(3) per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of "Candidatus Cardinium hertigii" and as a separate novel cluster.  相似文献   

17.
The relationship between environmental variables (chiefly temperature and humidity) and the population dynamics of spider mites is reviewed. Both direct effects on the spider mites and indirect effects operating through effects on spider mite natural enemies (mainly phytoseiid mites) are discussed. Factors determining the environmental conditions actually experienced by spider mites (microenvironment) are presented.Microenvironmental information versus environmental information from nearby weather stations is evaluated for utility in predicting spider mite population dynamics. A comprehensive plant canopy/spider mite/phytoseiid model is used to simulate an irrigated maize/spider-mite/phytoseiid system in a semi-arid climate. Under nearly all tested combinations of weather and irrigation, substantial differences were seen between simulations that considered microenvironment and those that considered only environmental conditions above the plant canopy. Future research needs are discussed.  相似文献   

18.
Larvae of the trombiculid mite Neotrombicula autumnalis were collected at 18 sites in and around Bonn, Germany, to be screened for infection with Borrelia burgdorferi s.l. by means of PCR. Questing larvae numbering 1380 were derived from the vegetation and 634 feeding ones were removed from 100 trapped micromammals including voles, mice, shrews and hedgehogs. In a laboratory infection experiment, a further 305 host-seeking larvae from the field were transferred onto Borrelia-positive mice and gerbils, and examined for spirochete infection at various intervals after repletion. In three cases borrelial DNA could be amplified from the mites: (1) from a larva feeding on a wild-caught greater white-toothed shrew (Crocidura russula), (2) from a pool of four larvae feeding on a B. garinii-positive laboratory mouse, and (3) from a nymph that had fed on a B. afzelii-positive laboratory gerbil as a larva. In the first case, borrelial species determination by DNA hybridization of the PCR product was only possible with a B. burgdorferi complex-specific probe but not with a species-specific one. In the second case, probing showed the same borrelial genospecies (B. garinii) as the laboratory host had been infected with. In the latter case, however, DNA hybridization demonstrated B. valaisiana while the laboratory host had been infected with B. afzelii. Subsequent DNA sequencing confirmed much higher similarity of the PCR product to B. valaisiana than to B. afzelii indicating an infection of the mite prior to feeding on the laboratory host. The negligible percentage of positive mites found in this study suggests that either the uptake of borrelial cells by feeding trombiculids is an extremely rare event or that ingested spirochetes are rapidly digested. On the other hand, the results imply a possible transstadial and transovarial transmission of borreliae once they are established in their trombiculid host. However, unless the transmission of borreliae to a given host is demonstrated, a final statement on the vector competence of trombiculid mites is not possible.  相似文献   

19.
One of the most important diseases of coffee plants is the coffee leaf rust fungus Hemileia vastatrix Berkeley and Broome (Uredinales). It can cause 30 % yield loss in some varieties of Coffea arabica (L.). Besides fungus, the coffee plants are attacked by phytophagous mites. The most common species is the coffee red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae). Predatory mites of the Phytoseiidae family are well-known for their potential to control herbivorous mites and insects, but they can also develop and reproduce on various other food sources, such as plant pathogenic fungi. In a field survey, we found Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) on the necrotic areas caused by the coffee leaf rust fungus during the reproductive phase of the pathogen. We therefore assessed the development, survivorship and reproduction of R. loxocheles feeding on coffee leaf rust fungus and measured predation and oviposition of this phytoseiid having coffee red mite as prey under laboratory conditions. The mite fed, survived, developed and reproduced successfully on this pathogen but it was not able to prey on O. ilicis. Survival and oviposition with only prey were the same as without food. This phytoseiid mite does not really use O. ilicis as food. It is suggested that R. loxocheles is one phytoseiid that uses fungi as a main food source.  相似文献   

20.
Many patients have sensitivities to multiple species of storage and house dust mites. It is not clear if this is because patients have multiple sensitivities to species-specific mite allergens or if these mites share many cross-reacting allergens. Our objective was to further define the cross-allergenicity between several species of storage and house dust mites using crossed-immunoelectrophoresis (CIE), crossed-radioimmunoelectrophoresis (CRIE), immunoblotting, and ELISA. CIE and CRIE reactions revealed that storage mites shared two cross-antigenic molecules and one of these bound IgE in a serum pool from mite allergic patients. Antibody in anti-sera built to each species of mite recognized many SDS–PAGE resolved proteins of other mite species and this suggested the potential for other cross-reactive allergens. Among patient sera, IgE bound to many different proteins but few had IgE that bound to a protein with common molecular weights across the mite species and this suggested mostly species-specific allergens. Antiserum built to each mite species precipitated one protein in shrimp extracts that bound anti-Der p 10 (tropomyosin) and IgE in the serum pool. Anti-Der p 10 showed strong binding to shrimp tropomyosin but very little to any of the mite proteins. ELISA showed the mite extracts contained very little tropomyosin. The storage and dust mites investigated contain mostly species-specific allergens and very small amounts of the pan-allergen tropomyosin compared to shrimp and snail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号