首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,3-Propanediol inhibition during glycerol fermentation to 1,3-propanediol by Clostridium butyricum CNCM 1211 has been studied. The initial concentration of the 1,3-propanediol affected the growth of the bacterium more than the glycerol fermentation. μ max was inversely proportional to the initial concentration of 1,3-propanediol (0–65 g l−1). For glycerol at 20 g l−1, the growth and fermentation were completely stopped at an initial 1,3-propanediol concentration of 65 g l−1. However, for an initial 1,3-propanediol concentration of 50 g l−1 and glycerol at 70 g l−1, the final concentration (initial and produced) of 1,3-propanediol reached 83.7 g l−1(1.1 M), with complete consumption of the glycerol. Therefore, during the fermentation, the strain tolerated a 1,3-propanediol concentration higher than the initial inhibitory concentration (65 g l−1). The addition of 1,2-propanediol or 2,3-butanediol (50 g l−1) in the presence of glycerol (50–100 g l−1), showed that 2-diols reduced the μ max in a similar way to 1,3-propanediol. The measurement of the osmotic pressure of glycerol solutions, diols and diol/glycerol mixtures did not indicate any differences between these compounds. The hypothesis of diol inhibition was discussed. Taking into account the strain tolerance of highly concentrated 1,3-propanediol during fermentation, the fermentation processes for optimising production were considered. Received: 15 November 1999 / Revision received: 1 February 2000 / Accepted: 4 February 2000  相似文献   

2.
In this work, the production of 1,3-propanediol from glucose and molasses was studied in a two-step process using two recombinant microorganisms. The first step of the process is the conversion of glucose or other sugar into glycerol by the metabolic engineered Saccharomyces cerevisiae strain HC42 adapted to high (>200 g l−1) glucose concentrations. The second step, carried out in the same bioreactor, was performed by the engineered strain Clostridium acetobutylicum DG1 (pSPD5) that converts glycerol to 1,3-propanediol. This two-step strategy led to a flexible process, resulting in a 1,3-propanediol production and yield that depended on the initial sugar concentration. Below 56.2 g l−1 of sugar concentration, cultivation on molasses or glucose showed no significant differences. However, at higher molasses concentrations, glycerol initially produced by yeast could not be totally converted into 1,3-propanediol by C. acetobutylicum and a lower 1,3-propanediol overall yield was observed. In our hand, the best results were obtained with an initial glucose concentration of 103 g l−1, leading to a final 1,3-propanediol concentration of 25.5 g l−1, a productivity of 0.16 g l−1 h−1 and 1,3-propanediol yields of 0.56 g g−1 glycerol and 0.24 g g−1 sugar, which is the highest value reported for a two-step process. For an initial sugar concentration (from molasses) of 56.2 g l−1, 27.4 g l−1 of glycerol were produced, leading to 14.6 g l−1 of 1.3-propanediol and similar values of productivity, 0.15 g l−1 h−1, and overall yield, 0.26 g g−1 sugar.  相似文献   

3.
Dielectric barrier discharge plasma was used to generate a stable strain of Klebsiella pneumoniae (designated to as Kp-M2) with improved 1,3-propanediol production. The specific activities of glycerol dehydrogenase, glycerol dehydatase and 1,3-propanediol oxidoreductase in the crude cell extract increased from 0.11, 9.2 and 0.15 U mg−1, respectively, for wild type to 0.67, 14.4 and 1.6 U mg−1 for Kp-M2. The glycerol flux of Kp-M2 was redistributed with the flux to the reductive pathway being increased by 20% in batch fermentation. The final 1,3-propanediol concentrations achieved by Kp-M2 in batch and fed-batch fermentations were 19.9 and 76.7 g l−1, respectively, which were higher than those of wild type (16.2 and 49.2 g l−1). The results suggested that dielectric barrier discharge plasma could be used as an effective approach to improve 1,3-propanediol production in K. pneumoniae.  相似文献   

4.
The aim of this study was to optimize a biotechnological process for the production of 1,3-propanediol (1,3-PD) based on low-quality crude glycerol derived from biodiesel production. Clostridium butyricum AKR102a was used in fed-batch fermentations in 1-L and 200-L scale. The newly discovered strain is characterized by rapid growth, high product tolerance, and the ability to use crude glycerol at the lowest purity directly gained from a biodiesel plant side stream. Using pure glycerol, the strain AKR102 reached 93.7 g/L 1,3-PD with an overall productivity of 3.3 g/(L*h). With crude glycerol under the same conditions, 76.2 g/L 1,3-PD was produced with a productivity of 2.3 g/(L*h). These are among the best results published so far for natural producers. The scale up to 200 L was possible. Due to the simpler process design, only 61.5 g/L 1,3-PD could be reached with a productivity of 2.1 g/(L*h).  相似文献   

5.
Industrial glycerol obtained through the transesterification process using rapeseed oil did not support growth of several strains ofClostridium butyricum obtained from bacterial culture collections. Ten new strains ofC. butyricum were obtained from mud samples from a river, a stagnant pond, and a dry canal. These new isolates fermented the commercial glycerol and produced 1,3-propanediol as a major fermentation product with concomitant production of acetic and butyric acids. Four of the ten isolates were able to grow on industrial glycerol obtained from rapeseed oil. One strain,C. butyricum E5, was very resistant to high levels of glycerol and 1,3-propanediol. Using fed-batch fermentation, 109 g L–1 of industrial glycerol were converted into 58 g of 1,3-propanediol, 2.2 g of acetate and 6.1 g of butyrate per liter.  相似文献   

6.
Currently, 1,3-propanediol (1,3-PD) is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensive chemical synthesis. A methylotrophic yeast Hansenula polymorpha was engineered by expression of dhaB1, dhaB2, dhaB3, dhaB RA1 and dhaB RA2 encoding glycerol dehydratase complex and dhaT encoding 1,3-PD oxidoreductase from Klebsiella pneumoniae under direction of promoter of glyceraldehyde-3 phosphate dehydrogenase (GAPDH). The engineered recombinant yeast strain can produce 1,3-PD from glucose (2.4 g L−1) as well as glycerol (0.8 g L−1), which might lead to a safe and cost-effective method for industrial production of 1,3-PD from various biomass resources.  相似文献   

7.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

8.
Previously, we constructed a glycerol oxidative pathway-deficient mutant strain of Klebsiella pneumoniae by inactivation of glycerol dehydrogenase (dhaD) to eliminate by-product synthesis during production of 1,3-propanediol (1,3-PD) from glycerol. Although by-product formation was successfully blocked in the resultant strain, the yield of 1,3-PD was not enhanced, probably because dhaD disruption resulted in insufficient regeneration of the cofactor NADH essential for the activity of 1,3-PD oxidoreductase (DhaT). To improve cofactor regeneration, in the present study we overexpressed an NAD+-dependent aldehyde dehydrogenase in the recombinant strain. To this end, an aldehyde dehydrogenase AldHk homologous to E. coli AldH but with NAD+-dependent propionaldehyde dehydrogenase activity was identified in K. pneumoniae. Functional analysis revealed that the substrate specificity of AldHk embraced various aldehydes including propionaldehyde, and that NAD+ was preferred over NADP+ as a cofactor. Overexpression of AldHk in the glycerol oxidative pathway-deficient mutant AK/pVOTHk resulted in a 3.6-fold increase (0.57 g l−1 to 2.07 g l−1) in the production of 3-hydroxypropionic acid (3-HP), and a 1.1-fold enhancement (8.43 g l−1 to 9.65 g l−1) of 1,3-PD synthesis, when glycerol was provided as the carbon source, compared to the levels synthesized by the control strain (AK/pVOT). Batch fermentation using AK/pVOTHk showed a significant increase (to 70%, w/w) in conversion of glycerol to the reductive metabolites, 1,3-PD and 3-HP, with no production of by-products except acetate.  相似文献   

9.
The effects of acetate and butyrate during glycerol fermentation to 1,3-propanediol at pH 7.0 by Clostridium butyricum CNCM 1211 were studied. At pH 7.0, the calculated quantities of undissociated acetic and butyric acids were insufficient to inhibit bacterial growth. The initial addition of acetate or butyrate at concentrations of 2.5 to 15 gL−1 had distinct effects on the metabolism and growth of Clostridium butyricum. Acetate increased the biomass and butyrate production, reducing the lag time and 1,3-propanediol production. In contrast, the addition of butyrate induced an increase in 1,3-propanediol production (yield: 0.75 mol/mol glycerol, versus 0.68 mol/mol in the butyrate-free culture), and reduced the biomass and butyrate production. It was calculated that reduction of butyrate production could provide sufficient NADH to increase 1,3-propanediol production. The effects of acetate and butyrate highlight the metabolic flexibility of Cl. butyricum CNCM 1211 during glycerol fermentation. Received: 2 January 2001 / Accepted: 6 February 2001  相似文献   

10.
Excretion of 1,3-propanediol (1,3-PD) by K. pneumoniae was compared in ammonium- and phosphate-limited chemostat cultures running with an excess of glycerol. 59 and 43% catabolic flux were directed to 1,3-PD in ammonia-limited cultures and phosphate-limited cultures at dilution rate of 0.1 h−1, respectively. Ammonia-limited fed-batch cultures produced 61 g 1,3-PD l−1 and a total of 15 g l−1 organic acid in 36 h. However, phosphate-limited fed-batch cultures excreted 61 g lactate l−1 and 44 g 1,3-PD l−1.  相似文献   

11.
The aim of the present study was to investigate the production of 1,3-propanediol (PDO) under non-sterile fermentation conditions by employing the strain Clostridium butyricum VPI 1718. A series of batch cultures were performed by utilizing biodiesel-derived crude glycerol feedstocks of different origins as the sole carbon source, in various initial concentrations. The strain presented similarities in terms of PDO production when cultivated on crude glycerol of various origins, with final concentrations ranging between 11.1 and 11.5 g/L. Moreover, PDO fermentation was successfully concluded regardless of the initial crude glycerol concentration imposed (from 20 to 80 g/L), accompanied by sufficient PDO production yields (0.52–0.55 g per gram of glycerol consumed). During fed-batch operation under non-sterile culture conditions, 67.9 g/L of PDO were finally produced, with a yield of 0.55 g/g. Additionally, the sustainability of the bioprocess during a continuous operation was tested; indeed, the system was able to run at steady state for 16 days, during which PDO effluent level was 13.9 g/L. Furthermore, possible existence of a microbial community inside the chemostat was evaluated by operating a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, and DGGE results revealed the presence of only one band corresponding to that of C. butyricum VPI 1718. Finally, non-sterile continuous cultures were carried out at different dilution rates (D), with inlet glycerol concentration at 80 g/L. Maximum PDO production was achieved at low D values (0.02 h−1) corresponding to 30.1 g/L, while the elaboration of kinetic data from continuous cultures revealed the stability of the bioprocess proposed, with global PDO production yield corresponding to 0.52 g/g.  相似文献   

12.
Metabolic role of 1,3-propanediol oxidoreductase (PDOR) in the production of 1,3-propanediol (1,3-PDO) with K. pneumonia was investigated by knocking out the coded gene dhaT. Fermentation with both the wide-type and mutant were studied in 5 l fermentor. A PDOR-deficient mutant K. pneumonia T1.9131 with 19% PDOR activity of the wild type was constructed. The cultures of the mutant indicated that PDOR inactivation had great effect on the other dha regulon enzymes: activity of glycerol dehydratase decreased by 70% while activity of glycerol dehydrogenase increased by 68%. Fed-batch fermentation showed that more metabolic flux of glycerol was directed to lactate and ethanol in the mutant. Lactate was identified as major metabolite and received an increase in the final concentration from 45 to 91 g l−1, while the concentration of 1,3-PDO production dropped from 94 to 36 g l−1. The results demonstrated PDOR was not indispensable in glycerol metabolism but was crucial in high 1,3-PDO productivity. It is postulated that a hypothetical oxidoreductase was expressed and replaced the function of PDOR. Blocking the pathway towards lactate and ethanol could be a plausible scheme to enhance 1,3-PDO productivity.  相似文献   

13.
14.
A new bacterial strain producing succinic acid was enriched from bovine rumen content. It is facultatively anaerobic, belongs to the family Pasteurellaceae and has similarity to the genus Mannheimia. In batch cultivations with D-glucose or sucrose the strain produced up to 5.8 g succinic acid l−1 with a productivity and a yield of up to 1.5 g l−1 h−1 and 0.6 g g−1, respectively. With crude glycerol up to 8.4 g l−1, 0.9 g l−1 h−1 and 1.2 g g−1 were obtained. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A wild type strain A-101 of Y. lipolytica and its three acetate-negative mutants (Wratislavia 1.31, Wratislavia AWG7, and Wratislavia K1) were compared for the production of citric acid from glucose and glycerol (pure and crude) in batch cultures. The substrates were used either as single carbon sources or as mixtures of glucose and pure or crude glycerol. The kinetic parameters, i.e., the volumetric citric acid production rate and yield obtained in the study show that the Wratislavia 1.31 and Wratislavia AWG7 strains produced the highest amount of citric acid from glycerol, with a yield from 0.40 to 0.53 g g−1. This substrate was found to be a better carbon source for the biosynthesis of citric acid than glucose. The results obtained with the same strains have shown low content of isocitric acid and polyols, such as erythritol and mannitol. Y. lipolytica A-101 strain produced the highest amount of isocitric acid, from 13.8 to 21% isocitric acid in the sum of citric acids. However, the highest concentrations of erythritol were found in cultures with Y. lipolytica Wratislavia K1, from 18.1 to 30 g l−1, for glucose and pure glycerol, respectively.  相似文献   

16.
In fed-batch culture of Klebsiella pneumoniae, 1,3-propanediol production was growth associated, while the by-products, including lactic acid and ethanol, increased sharply as the cells grew slowly. When the fed-batch culture was supplied with a mixture of organic acids including citrate, fumarate and succinate, cell growth and 1,3-propanediol production increased significantly, whereas the by-products, especially lactic acid and ethanol, decreased sharply. High concentrations of PDO and acetate inhibited cell growth and PDO production. To improve the PDO production, repeated fed-batch culture with addition of the organic acid mixture was performed in a 5-l reactor. The fed-batch culture was repeated five times, and the 1,3-propanediol yield and concentration reached above 0.61 mol mol−1 and 66 g l−1, respectively, in 20 h for each cycle. Furthermore, the PDO productivity reached above 3.30 g l−1 h−1 in each cycle, which was much higher than that of the original fed-batch culture.  相似文献   

17.
Glycerol conversion to 1,3-propanediol by newly isolated clostridia   总被引:16,自引:0,他引:16  
Summary From pasteurized mud and soil samples glycerol-fermenting clostridia that produced 1,3-propanediol, butyrate and acetate were obtained. The isolates were taxonomically characterized and identified as Clostridium butyricum. The most active strain, SH1 = DSM 5431, was able to convert up to 110 g/l of glycerol to 56 g/l of 1,3-propanediol in 29 h. A few Clostridium strains from culture-collections (3 out of 16 of the C. butyricum group) and some isolates of Kutzner from cheese samples were also able to ferment glycerol, but the final concentration and the productivity of 1,3-propanediol was lower than in strain SH1. Strain SH1 grew well in a pH range between 6.0 and 7.5, with a weak optimum at 6.5, and was stimulated by sparging with N2. Best overall productivity was obtained in fed-batch culture with a starting concentration of 5% glycerol. In all fermentations the yield of 1,3-propanediol in relation to glycerol was higher than expected from NADH production by acid formation. On the other hand the H2 production was lower than expected, if per mole of acetyl coenzyme A one mole of H2 is released. The observations point to a substantial transfer of reducing potential from ferredoxin to NAD, which finally results in increased 1,3-propanediol production.  相似文献   

18.
Butanol, a four-carbon primary alcohol (C4H10O), is an important industrial chemical and has a good potential to be used as a superior biofuel. Bio-based production of butanol from renewable feedstock is a promising and sustainable alternative to substitute petroleum-based fuels. Here, we report the development of a process for butanol production from glycerol, which is abundantly available as a byproduct of biodiesel production. First, a hyper butanol producing strain of Clostridium pasteurianum was isolated by chemical mutagenesis. The best mutant strain, C. pasteurianum MBEL_GLY2, was able to produce 10.8 g l−1 butanol from 80 g l−1 glycerol as compared to 7.6 g l−1 butanol produced by the parent strain. Next, the process parameters were optimized to maximize butanol production from glycerol. Under the optimized batch condition, the butanol concentration, yield, and productivity of 17.8 g l−1, 0.30 g g−1, and 0.43 g l−1 h−1 could be achieved. Finally, continuous fermentation of C. pasteurianum MBEL_GLY2 with cell recycling was carried out using glycerol as a major carbon source at several different dilution rates. The continuous fermentation was run for 710 h without strain degeneration. The acetone–butanol–ethanol productivity and the butanol productivity of 8.3 and 7.8 g l−1 h−1, respectively, could be achieved at the dilution rate of 0.9 h−1. This study reports continuous production of butanol with reduced byproducts formation from glycerol using C. pasteurianum, and thus could help design a bioprocess for the improved production of butanol.  相似文献   

19.
Mu Y  Teng H  Zhang DJ  Wang W  Xiu ZL 《Biotechnology letters》2006,28(21):1755-1759
1,3-Propanediol (1,3-PD) was produced by Klebsiella pneumoniae using crude glycerol obtained from biodiesel production. The 1,3-PD concentration of 51.3 g/l−1 on crude glycerol from alkali-catalyzed methanolysis of soybean oil was comparable to that of 53 g/l−1 on crude glycerol derived from a lipase-catalyzed process. The productivities of 1.7 g l−1 h−1 on crude glycerol were comparable to that of 2 g l−1 h−1 on pure glycerol. It could be concluded that the crude glycerol could be directly converted to 1,3-PD without any prior purification.  相似文献   

20.
The microbial production of 1,3-propaneidol (1,3-PD) by Klebsiella pneumoniae in continuous fermentation was investigated under low, medium and high glycerol concentrations in the absence and presence of oxygen. The production of 1,3-PD increased with increasing glycerol concentrations, reaching a maximum (266 mmol l−1) under high glycerol concentration (760 mmol l−1) with air sparging at 0.04 vvm. The yield of 1,3-PD, however, decreased gradually with increasing glycerol concentrations, with the highest yield (0.52 mol mol−1) obtained for low glycerol concentration (270 mmol l−1) under anaerobic condition. Enzyme activity assays showed that the specific activity of glycerol dehydratase was highest (0.04 U mg−1) for culture sparged with 0.04 vvm air under high glycerol concentration. The specific activities of glycerol dehydrogenase and 1,3-propanediol oxidoreductase were also improved for all glycerol concentrations and in the presence of oxygen, implying that the dha operon was not repressed under microaerobic conditions. Analysis of metabolic fluxes showed that more carbon flux was shifted to the oxidative pathway with increasing glycerol concentrations, resulting in a reduced flux to 1,3-PD formation. However, the increases in carbon fluxes were not evenly distributed among the oxidative branches of the pathway. Furthermore, ethanol and acetic acid levels were slightly increased whereas 2,3-butanediol and lactic levels were greatly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号