首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclohexanone monooxygenase (CHMO) gene of Acinetobacter sp. NCIMB 9871 was simultaneously expressed with the genes encoding molecular chaperones and foldases in Escherichia coli. While the expression of the CHMO gene alone resulted in the formation of inclusion bodies, coexpression of the chaperone or foldase genes remarkably increased the production of soluble CHMO enzyme in recombinant E. coli. Furthermore, it was found that molecular chaperones were more beneficial than foldases for enhancing active CHMO enzyme production. The recombinant E. coli strain simultaneously expressing the genes for CHMO, GroEL/GroES and DnaK/DnaJ/GrpE showed a specific CHMO activity of 111 units g–1 cell protein, corresponding to a 38-fold enhancement in CHMO activity compared with the control E. coli strain expressing the CHMO gene alone.  相似文献   

2.
The Bacillus subtilis GroESL chaperonin was isolated by sucrose density gradient centrifugation and the constituent GroES and GroEL moieties were purified by electrophoresis in agarose. Electron microscopic images of negatively stained GroEL and GroES oligomers and GroESL complexes were averaged using a reference-free alignment method. The GroEL and GroES particles had the sevenfold symmetry characteristic of their Escherichia coli counterparts. GroESL complexes, reconstituted efficiently in vitro from GroEL and GroES in the absence of added ADP or ATP, had the characteristic bullet- and football-like shapes in side view. Purified bacteriophage φ29 head-tail connectors having a mass in excess of 0.4 MDa were shown to bind to GroESL at the end opposite to the GroES. The same GroESL-connector complexes were isolated from phage-infected cells in which capsid assembly was blocked, and thus the complex may have functional significance in φ29 morphogenesis.  相似文献   

3.
Aminoglycoside antibiotics affect protein translation fidelity and lead to protein aggregation and an increase in intracellular oxidative stress level as well. The overexpression of the chaperonin GroEL/GroES system promotes short-term tolerance to aminoglycosides in Escherichia coli. Here, we demonstrated that the coexpression of prefoldin or Hsp60 originating from the hyperthermophilic archaeon Pyrococcus furiosus in E. coli cells can rescue cell growth and inhibit protein aggregation induced by streptomycin exposure. The results of our study show that hyperthermophilic chaperones endow E. coli with a higher tolerance to streptomycin than the GroEL/GroES system, and that they exert better effects on the reduction of intracellular protein misfolding, indicating that these chaperones have unique features and functions.  相似文献   

4.
Escherichia coli chaperonins GroEL and GroES are indispensable for survival and growth of the cell since they provide essential assistance to the folding of many newly translated proteins in the cell. Recent studies indicate that a substantial portion of the proteins involved in the host pathways are completely dependent on GroEL–GroES for their folding and hence providing some explanation for why GroEL is essential for cell growth. Many proteins either small-single domain or large multidomains require assistance from GroEL–ES during their lifetime. Proteins of size up to 70 kDa can fold via the cis mechanism during GroEL–ES assisted pathway, but other proteins (>70 kDa) that cannot be pushed inside the cavity of GroEL–ATP complex upon binding of GroES fold by an evolved mechanism called trans. In recent years, much work has been done on revealing facts about the cis mechanism involving the GroEL assisted folding of small proteins whereas the trans mechanism with larger polypeptide substrates still remains under cover. In order to disentangle the role of chaperonin GroEL–GroES in the folding of large E. coli proteins, this review discusses a number of issues like the range of large polypeptide substrates acted on by GroEL. Do all these substrates need the complete chaperonin system along with ATP for their folding? Does GroEL act as foldase or holdase during the process? We conclude with a discussion of the various queries that need to be resolved in the future for an extensive understanding of the mechanism of GroEL mediated folding of large substrate proteins in E. coli cytosol.  相似文献   

5.
Wang Q  Min C  Zhu F  Xin Y  Zhang S  Luo L  Yin Z 《Current microbiology》2011,62(5):1535-1541
The amino acid l-theanine (γ-glutamylethylamide) has potential important applications in the food and pharmaceutical industries and increased demand for this compound is expected. It is the major “umami” (good taste) component of tea and its favorable physiological effects on mammals have been reported. An enzymatic method for the synthesis of l-theanine involving recombinant Escherichia coli γ-glutamyltranspeptidase (GGT) has been developed. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Escherichia coli γ-GGT. In order to obtain γ-GGT with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9 (consisting of glycerol and inorganic salts) and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel–nitrilotriacetic acid (Ni–NTA) resin chromatography with a yield of 115 mg per liter fermentation culture. After the SUMO/γ-GGT fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 62 mg recombinant γ-GGT was obtained from 1 l fermentation culture with no less than 95% purity. The recombinant γ-GGT showed great transpeptidase activity, with 1500 U of purified recombinant γ-GGT in a 1-l reaction system, a biosynthesis yield of 41 g of l-theanine was detected by paper chromatography or high pressure liquid chromatography (HPLC). Thus, the application of SUMO technology to the expression and purification of γ-GGT potentially could be employed for the industrial production of l-theanine.  相似文献   

6.
Increasing therapeutic applications for recombinant human interferon-gamma (rhIFN-γ), an antiviral pro-inflammatory cytokine, has broadened interest in optimizing methods for its production. We herein describe a unicellular eukaryotic system, Leishmania tarentolae, a Trypanosomatidae protozoan parasite of gecko Tarentola annularis, which has recently been introduced as a candidate for heterologous gene expression. In this study, the hIFN-γ cDNA was amplified from phyto-hemagglutinin-stimulated peripheral blood mononuclear cells of a healthy blood donor using RT–PCR. In order to express, the rhIFN-γ protein, the resulting cDNA was cloned in two expression cassettes (each containing one copy of hIFN-γ cDNA) and integrated into the small subunit of ribosomal RNA gene of L. tarentolae genome by electroporation. Transformed clones were selected in the presence of appropriate antibiotics. Western blotting of rhIFN-γ and ELISA confirmed the expression and production of 9.5 mg of rhIFN-γ protein/l respectively.  相似文献   

7.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   

8.
The establishment of a fermentation process for the production of pig liver esterase (PLE) in high yields is necessary for industrial applications. In our previous studies, we reported the recombinant expression of PLE in Escherichia coli Origami™ (DE3) in shake flask. Only a coexpression with chaperones GroEL/ES allowed the production of soluble and active enzyme. The optimization of the cultivation conditions, such as temperature, inducer concentrations, or media compositions to increase enzyme yield in a fermentation process is described here. Using fed-batch fermentation cell densities up to OD = 50 were obtained, but almost no active enzyme was expressed. Only batch fermentation was found suitable for production of active pig liver esterase and cell densities between OD = 7–13 and activities of 300–400 U L−1 for isoenzyme PLE-1 (γPLE) and 1,400 U L−1 for PLE-5 were obtained after 22 h total cultivation time or 18 h after induction of PLE expression, respectively.  相似文献   

9.
Molecular chaperones are a ubiquitous family of cellular proteins that mediate the correct folding of other target polypeptides. In our previous study, the recombinant anti-BNP scFv, which has promising applications for diagnostic, prognostic, and therapeutic monitoring of heart failure, was expressed in the cytoplasm of Escherichia coli. However, when the anti-BNP scFv was expressed, 73.4% of expressed antibodies formed insoluble inclusion bodies. In this study, molecular chaperones were coexpressed with anti-BNP scFv with the goal of improving the production of functional anti-BNP in the cytoplasm of E. coli. Five sets of molecular chaperones were assessed for their effects on the production of active anti-BNP scFv. These sets included the following: trigger factor (TF); groES/groEL; groES/groEL/TF; dnaK/dnaJ/grpE; groES/groEL/dnaK/dnaJ/grpE. Of these chaperones, the coexpression of anti-BNP scFv with the groES/groEL chaperones encoded in plasmid pGro7 exhibited the most efficient functional expression of anti-BNP scFv as an active form. Coexpressed with the groES/groEL chaperones, 64.9% of the total anti-BNP scFv was produced in soluble form, which is 2.4 times higher scFv than that of anti-BNP scFv expressed without molecular chaperones, and the relative binding activity was 1.5-fold higher. The optimal concentration of l-arabinose required for induction of the groES/groEL chaperone set was determined to be 1.0 mM and relative binding activity was 3.5 times higher compared with that of no induction with l-arabinose. In addition, soluble anti-BNP scFv was increased from 11.5 to 31.4 μg/ml with optimized inducer concentration (1.0 mM l-arabinose) for the coexpression of the groES/groEL chaperones. These results demonstrate that the functional expression of anti-BNP scFv can be improved by coexpression of molecular chaperones, as molecular chaperones can identify and help to refold improperly folded anti-BNP scFv.  相似文献   

10.
The production of d-hydantoinase and carbamoylase from Agrobacterium radiobacter NRRL B11291 using T7 and trc promoters, respectively, was found to cause protein aggregates in Escherichia coli. We initiated a systematic study aimed at overproducting these two proteins in a soluble form. As a result, the protein aggregate from carbamoylase overproduction could be alleviated with the aid of GroEL/GroES. In contrast, the production of a high level of d-hydantoinase in an active form can be achieved at low temperature (25 °C) or by the coproduction of DnaJ/DnaK. Overall, with such approaches both recombinant proteins gain more than a four-fold increase in enzyme activity. In addition, by fusion with thioredoxin, d-hydantoinase activity can be increased 25% more than the unfused counterpart in the presence of DnaJ/DnaK. These results indicate the success of our approaches to overproducing d-hydantoinase and carbamoylase in a soluble form in E. coli. Received: 26 November 1999 / Received revision: 28 February 2000 / Accepted: 10 March 2000  相似文献   

11.
A series of continuous cultures was performed to understand the product formation kinetics of recombinant human interferon gamma (rhIFN-γ) in Escherichia coli at different dilution rates ranging from 0.1 to 0.3 h−1 in different media. A T7 promoter-based vector was used for expression of IFN-γ in E. coli BL21 (DE3) cells. The recombinant protein was produced as inclusion bodies, thus allowing a rapid buildup of rhIFN-γ inside the cell, with the specific product yield (Y p/X ) reaching a maximum value of 182 mg g−1 dry cell weight (DCW). In all the media tested, the specific product formation rate (q p ) was found to be strongly correlated with the specific growth rate (μ), demonstrating the growth-associated nature of product formation. The q p values show no significant decline with time postinduction, even though the recombinant protein has been over produced inside the cell. The maximum q p level of 75.5 mg g−1 h−1 was achieved at the first hour of induction at the dilution rate of 0.3 h−1. Also, this correlation between q p and μ was not critically dependent on media composition, which would made it possible to grow cells in defined media in the growth phase and then push up the specific growth rate just before induction by pulse addition of glucose and yeast extract. This would ensure the twin objectives of high biomass and high specific productivities, leading to high volumetric product concentration.  相似文献   

12.
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co‐chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo‐oligomers and all possible other chloroplast co‐chaperonin hetero‐oligomers are functional, but only that consisting of CPN11/20/23‐CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo‐EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co‐chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero‐oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero‐oligomerization, the chloroplast co‐chaperonin CPN11/20/23 forms seven GroES‐like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof‐forming domains in the dome‐shaped CPN11/20/23 co‐chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.  相似文献   

13.
The previously reported functional expression of the γ-isoenzyme of pig liver carboxylesterase (γ-rPLE) in Pichia pastoris is hampered by the small amount of active enzyme formed. Earlier attempts for expression in Escherichia coli failed completely and not even inactive protein was detected. The lack of glycosylation ability of E. coli was ruled out as a possible reason, as it could be shown in this work that deglycosylated PLE also is active. Expression of γ-rPLE was studied using a range of E. coli strains with careful design of the constructs used and control of the cultivation conditions. Indeed, expression in E. coli strains Rosetta, Origami and Rosetta-gami was successful, but the majority of enzymes was present as inclusion bodies and only little soluble but inactive protein was detected. Denaturation and refolding of inclusion bodies failed. However, with the E. coli strain Origami, coexpressing the molecular chaperones GroEL und GroES, a functional expression of γ-rPLE was possible. The recombinant enzyme was released by cell disruption and subjected to His-tag purification. The purified esterase had a specific activity of 92 U mg−1 protein and a V max/K m value of 10.8×10−3 min−1 towards p-nitrophenyl acetate. Activity staining of native polyacrylamide gels gave a single band at 175 kDa with esterolytic activity indicating a trimeric form of γ-rPLE (∼60 kDa per monomer). γ-rPLE was biochemically characterized and its properties were compared to the enzyme previously expressed in P. pastoris. pH and temperature profiles were identical and highest activity was found at pH 8–8.5 and 60 °C, respectively. In the kinetic resolution of (R,S)-1-phenyl-2-butyl acetate with esterase from both expression hosts, similar enantioselectivities (E=50) were found.  相似文献   

14.
Expression of the human apoptosis modulator protein Bax in Escherichia coli is highly toxic, resulting in cell lysis at very low concentrations (Asoh, S., et al., J. Biol. Chem. 273, 11384–11391, 1998). Attempts to express a truncated form of murine Bax in the periplasm by using an expression vector that attached the OmpA signal sequence to the protein failed to alleviate this toxicity. In contrast, attachment of a peptide based on a portion of the E. coli cochaperone GroES reduced Bax's toxicity significantly and allowed good expression. The peptide, which was attached to the N-terminus, included the amino acid sequence of the mobile loop of GroES that has been demonstrated to interact with the chaperonin, GroEL. Under normal growth conditions, expression of this construct was still toxic, but generated a small amount of detectable recombinant Bax. However, when cells were grown in the presence of 2% ethanol, which stimulated overproduction of the molecular chaperones GroEL and DnaK, toxicity was reduced and good overexpression occurred. Two-dimensional gel electrophoresis analysis showed that approximately 15-fold more GroES-loop-Bax was produced under these conditions than under standard conditions and that GroEL and DnaK were elevated approximately 3-fold.  相似文献   

15.
Chaperonins are absolutely required for the folding of a subset of proteins in the cell. An earlier proteome‐wide analysis of Escherichia coli chaperonin GroEL/GroES (GroE) interactors predicted obligate chaperonin substrates, which were termed Class III substrates. However, the requirement of chaperonins for in vivo folding has not been fully examined. Here, we comprehensively assessed the chaperonin requirement using a conditional GroE expression strain, and concluded that only ~60% of Class III substrates are bona fide obligate GroE substrates in vivo. The in vivo obligate substrates, combined with the newly identified obligate substrates, were termed Class IV substrates. Class IV substrates are restricted to proteins with molecular weights that could be encapsulated in the chaperonin cavity, are enriched in alanine/glycine residues, and have a strong structural preference for aggregation‐prone folds. Notably, ~70% of the Class IV substrates appear to be metabolic enzymes, supporting a hypothetical role of GroE in enzyme evolution.  相似文献   

16.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼150 h (∼6 days), providing a good model to characterize the football-shaped complex.  相似文献   

17.
The Escherichia coli chaperonin machine is composed of two members, GroEL and GroES. The GroEL chaperonin can bind 10–15% of E. coli’s unfolded proteins in one of its central cavities and help them fold in cooperation with the GroES cochaperonin. Both proteins are absolutely essential for bacterial growth. Several large, lytic bacteriophages, such as T4 and RB49, use the host-encoded GroEL in conjunction with their own bacteriophage-encoded cochaperonin for the correct assembly of their major capsid protein, suggesting a cochaperonin specificity for the in vivo folding of certain substrates. Here, we demonstrate that, when the cochaperonin of either bacteriophage T4 (Gp31) or RB49 (CocO) is expressed in E. coli, the otherwise essential groES gene can be deleted. Thus, it appears that, despite very little sequence identity with groES, the bacteriophage-encoded Gp31 and CocO proteins are capable of replacing GroES in the folding of E. coli’s essential, housekeeping proteins.  相似文献   

18.
The chaperonin GroEL is an essential chaperone that assists in protein folding with the aid of GroES and ATP. GroEL forms a double-ring structure, and both rings can bind GroES in the presence of ATP. Recent progress on the GroEL mechanism has revealed the importance of a symmetric 1:2 GroEL:GroES2 complex (the “football”-shaped complex) as a critical intermediate during the functional GroEL cycle. We determined the crystal structure of the football GroEL:GroES2-ATP14 complex from Escherichia coli at 3.8 Å, using a GroEL mutant that is extremely defective in ATP hydrolysis. The overall structure of the football complex resembled the GroES-bound GroEL ring of the asymmetric 1:1 GroEL:GroES complex (the “bullet” complex). However, the two GroES-bound GroEL rings form a modified interface by an ~ 7° rotation about the 7-fold axis. As a result, the inter-ring contacts between the two GroEL rings in the football complex differed from those in the bullet complex. The differences provide a structural basis for the apparently impaired inter-ring negative cooperativity observed in several biochemical analyses.  相似文献   

19.
Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm of E. coli was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK, DsbA, and DsbC was effective in enhancing the solubility and biological activity. Non-fused Lip or Lip fusions heterologously expressed in the periplasm of E. coli formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip–HlyA fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA.  相似文献   

20.
GroELx and GroESx proteins of symbiotic X-bacteria from Amoeba proteus were overproduced in Escherichia coli transformed with pAJX91 and pUXGPRM, respectively, and their chaperonin functions were assayed. We utilized σ70-dependent specific promoters of groEx in the expression vectors and grew recombinant cells at 37°C to minimize coexpression of host groE of E. coli. For purifying the proteins, we applied the principle of heat stability for GroELx and pI difference for GroESx to minimize copurification with the hosts GroEL and GroES, respectively. After ultracentrifugation in a sucrose density gradient, the yield and purity of GroELx were 56 and 89%, respectively. The yield and purity of GroESx after anion-exchange chromatography were 62 and 91%, respectively. Purified GroELx had an ATPase activity of 53.2 nmol Pi released/min/mg protein at 37°C. The GroESx protein inhibited ATPase activity of GroELx to 60% of the control at a ratio of 1 for GroESx-7mer/GroELx-14mer. GroESLx helped refolding of urea-unfolded rhodanese up to 80% of the native activity at 37°C. By chemical cross-linking analysis, oligomeric properties of GroESx and GroELx were confirmed as GroESx7 and GroELx14 in two stacks of GroELx7. In this study, we developed a method for the purification of GroESLx and demonstrated that their chaperonin function is homologous to GroESL of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号