首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last decades, the research on bacterial cell-cell communication or quorum sensing has been quite intense. Quorum sensing allows bacteria to coordinate their behavior and to act as one entity. Quorum sensing controls microbiological functions of medical, agricultural and industrial importance and a better understanding of the underlying mechanisms and the conditions under which the signaling occurs, offers possibilities for new applications. In this article a dynamic model for diauxic growth, overflow metabolism and AI-2-mediated cell-cell communication of Salmonella Typhimurium is presented. The growth, and the production and uptake of the AI-2 signaling molecule of S. Typhimurium are investigated in a controlled environment (bioreactor). In a first stage a model is developed to describe diauxic growth and overflow metabolism. This model is extended in a second stage to describe AI-2 dynamics of S. Typhimurium in relation to the growth kinetics and biomass concentration. It is illustrated how this model can be employed to test hypotheses concerning AI-2 dynamics on the basis of macroscopic data.  相似文献   

2.
N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion.  相似文献   

3.
Aerobic granulation is a promising process for wastewater treatment, but this granulation process is very complicated and is affected by many factors. Thus, a mathematical model to quantitatively describe such a granulation process is highly desired. In this work, by taking into account all of key steps including biomass growth, increase in particle size and density, detachment, breakage and sedimentation, an one‐dimensional mathematic model was developed to simulate the granulation process of activated sludge in a sequencing batch reactor (SBR). Discretization methodology was applied by dividing operational time, sedimentation process, size fractions and slices into discretized calculation elements. Model verification and prediction for aerobic granulation process were conducted under four different conditions. Four parameters indicative of granulation progression, including mean radius, biomass discharge ratio, total number, and bioparticle size distribution, were predicted well with the model. An optimum controlling strategy, automatically adjusted of settling time, was also proposed based on this model. Moreover, aerobic granules with a density higher than 120 g VSS/L and radius in a range of 0.4–1.0 mm were predicted to have both high settling velocity and substrate utilization rate, and the corresponding optimum operating conditions were be determined. Experimental results demonstrate that the developed model is appropriate for simulating the formation of aerobic granules in SBRs. These results are useful for designing and optimizing the cultivation and operation of aerobic granule process. Biotechnol. Bioeng. 2013; 110: 1312–1322. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Aerobic granulation represents an important bacterium‐to‐bacterium self‐immobilization process that has been exploited for the treatment of a wide spectrum of wastewaters, but the mechanism behind still remains unclear in a microbiological sense. This study investigated the possible involvement of ATP and autoinducer‐2 (AI‐2) in aerobic granulation. Results revealed that initiation of microbial aggregation is closely associated with the ATP content of biomass, whereas AI‐2 of biomass would be essential for maturation of aerobic granules. Furthermore, it was found that the AI‐2‐associated coordination of microorganisms in microbial aggregates would be biomass density dependent. This study clearly shows the involvement of ATP and autoinducer‐2 in aerobic granulation, and may be exploited further for enhancement or prevention of microbial aggregation in general, for example, rapid granulation for wastewater treatment or inhibition of biofouling in membrane bioreactor. Biotechnol. Bioeng. 2010;105: 51–58. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Aerobic granular sludge sequencing batch reactors (SBR) are a promising technology for treating wastewater. Increasing evidence suggests that aerobic granulation in SBRs is driven by selection pressures exerted on microorganisms. Three major selection pressures have been identified as follows: settling time, volume exchange ratio and discharge time. This review demonstrates that these three major selection pressures can all be unified to one, the minimal settling velocity of bio-particles, that determines aerobic granulation in SBRs. The unified selection pressure theory is a useful guide for manipulating and optimizing the formation and characteristics of aerobic granules in SBRs. Furthermore, the unified theory provides a single engineering basis for scale up of aerobic granular sludge SBRs.  相似文献   

6.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   

7.
Quorum sensing in Serratia   总被引:1,自引:0,他引:1  
Many bacteria use cell-cell communication to monitor their population density, synchronize their behaviour and socially interact. This communication results in a coordinated gene regulation and is generally called quorum sensing. In gram-negative bacteria, the most common quorum signal molecules are acylated homoserine lactones (AHLs), although other low-molecular-mass signalling molecules have been described such as Autoinducer-2 (AI-2). The phenotypes that are regulated in Serratia species by means of AHLs are remarkably diverse and of profound biological and ecological significance, and often interconnected with other global regulators. Furthermore, AHL- and AI-2-mediated systems (less profoundly studied) are continuously being discovered and explored in Serratia spp., many having interesting twists on the basic theme. Therefore, this review will highlight the current known quorum sensing systems in Serratia spp., including the important nosocomial pathogen Serratia marcescens.  相似文献   

8.
9.
With the emergence of microbial resistance pathogens, recent research aims at studying new mechanisms of action of antibiotics. This review discusses the mechanisms and types of quorum sensing (QS) inhibitors in Gram negative bacteria. It illustrates all published data available in literature pertaining to novel compounds that showed activity against different targets in the quorum sensing pathways in Gram negative bacteria. A systemic overview has been conducted by searching PubMed, Medline, and the Cochrane Library and data extraction of all quorum sensing inhibitors with their mechanisms of action have been collected. This review will focus on signaling autoinducer AI-1 in Gram negative bacteria. The biological activity of the antagonists is mainly reported as IC50 (the concentration of an inhibitor where the response is reduced by half).  相似文献   

10.
Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health.  相似文献   

11.
Recent reports have shown that bacterial cell-cell communication or quorum sensing is quite prevalent in pathogenic Escherichia coli, especially at high cell density; however, the role of quorum sensing in nonpathogenic E. coli is less clear and, in particular, there is no information regarding the role of quorum sensing in overexpression of plasmid-encoded genes. In this work, it was found that the activity of a quorum signaling molecule, autoinducer-2 (AI-2), decreased significantly following induction of several plasmid-encoded genes in both low and high-cell-density cultures of E. coli. Furthermore, we show that AI-2 signaling level was linearly related to the accumulation level of each protein product and that, in general, the highest rates of recombinant protein accumulation resulted in the greatest attenuation of AI-2 signaling. Importantly, our findings demonstrate for the first time that recombinant E. coli communicate the stress or burden of overexpressing heterologous genes through the quorum-based AI-2 signaling pathway.  相似文献   

12.
AIMS: This paper attempts to provide visual evidence of how aerobic granulation evolves in sequential aerobic sludge blanket reactors. METHODS AND RESULTS: A series of experiments were conducted in two column-type sequential aerobic sludge reactors fed with glucose and acetate as sole carbon source, respectively. The evolution of aerobic granulation was monitored using image analysis and optical and scanning electron microscopy. The results indicated that the formation of aerobic granules was a gradual process from seed sludge to compact aggregates, further to granular sludge and finally to mature granules with the sequential operation proceeding. Glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density and microbial activity. However, the microbial diversity of the granules was associated with the carbon source supplied. In this work, an important aerobic starvation phase was identified during sequential operation cycles. It was found that periodical aerobic starvation was an effective trigger for microbial aggregation in the reactor and further strengthened cell-cell interaction to form dense aggregates, which was an essential step of granulation. The periodical starvation-induced aggregates would finally be shaped to granules by hydrodynamic shear and flow. CONCLUSION: Aerobic granules can be formed within 3 weeks in the systems. The periodical starvation and hydrodynamic conditions would play a crucial role in the granulation process. SIGNIFICANCE AND IMPACT OF THE STUDY: Aerobic granules have excellent physical characteristics as compared with conventional activated sludge flocs. This research could be helpful for the development of an aerobic granule-based novel type of reactor for handling high strength organic wastewater.  相似文献   

13.
Disruption of quorum sensing, bacterial cell-to-cell communication by means of small signal molecules, has been suggested as a new anti-infective strategy for aquaculture. However, data about the impact of quorum sensing on the virulence of aquatic pathogens are scarce. In this study, a model system using gnotobiotically cultured Artemia franciscana was developed in order to determine the impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and V. harveyi on their virulence. Mutations in the autoinducer 2 (AI-2) synthase gene luxS, the AI-2 receptor gene luxP or the response regulator gene luxO of the dual channel quorum sensing system of V. harveyi abolished virulence of the strain towards Artemia. Moreover, the addition of an exogenous source of AI-2 could restore the virulence of an AI-2 non-producing mutant. In contrast, none of the mutations in either the acylated homoserine lactone (AHL)-mediated component of the V. harveyi system or the quorum sensing systems of Ae. hydrophila and V. anguillarum had an impact on virulence of these bacteria towards Artemia. Our results indicate that disruption of quorum sensing could be a good alternative strategy to combat infections caused by V. harveyi.  相似文献   

14.
Summary The granulation and properties of aerobic sludge were studied in two sequencing batch airlift reactors (SBARs). The synthetic wastewater in the two reactors had initially different levels of COD (400 mg l−1 in R1 and 1600 mg l−1 in R2). A hydraulic cycle time of 3 and 12 h was conducted in the reactors R1 and R2, respectively and the process of granulation was observed by optical microscopy. It was found that the course of granulation at a cycle time of 3 h in R1 was shorter than that at cycle time of 12 h in R2 and the properties of aerobic granules were distinct in the reactors due to the different hydraulic cycle time. Under a cycle time of 3 h, granule diameter was around 1.0–2.0 mm, VSS ratio was 92.08% with stronger granule strength; under a cycle time of 12 h, granule diameter was around 0.5–1.0 mm, VSS ratio was 83.92% with weaker granule strength. In addition, the morphology of microorganisms in granules was obviously dissimilar when the hydraulic cycle time was different. It was concluded that the hydraulic cycle time plays a crucial role in the granulation and properties of aerobic granules. It is expected that the experimental findings will provide useful information on factors affecting aerobic granulation.  相似文献   

15.
The Gram-negative bacterium Vibrio harveyi produces and responds to three autoinducers, AI-1, AI-2, and CAI-1 to regulate cell density dependent gene expression by a process referred to as quorum sensing. The concentration of the autoinducers is sensed by three cognate hybrid sensor kinases, and information is channeled via the HPt protein LuxU to the response regulator LuxO. Here, a detailed biochemical study on the enzymatic activities of the membrane-integrated hybrid sensor kinase LuxN, the sensor for N-(d-3-hydroxybutanoyl)homoserine lactone (AI-1), is provided. LuxN was heterologously overproduced as the full-length protein in Escherichia coli. LuxN activities were characterized in vitro and are an autophosphorylation activity with an unusually high ATP turnover rate, stable LuxU phosphorylation, and a slow phosphatase activity with LuxU approximately P as substrate. The presence of AI-1 affected the kinase but not the phosphatase activity of LuxN. The influence of AI-1 on the LuxN--> LuxU signaling step was monitored, and in the presence of AI-1, the kinase activity of LuxN, and hence the amount of LuxU approximately P produced, were significantly reduced. Half-maximal inhibition of kinase activity by AI-1 occurred at 20 mum. Together, these results indicate that AI-1 directly interacts with LuxN to down-regulate its autokinase activity and suggest that the key regulatory step of the AI-1 quorum sensing system of Vibrio harveyi is AI-1-mediated repression of the LuxN kinase activity.  相似文献   

16.
Is sludge retention time a decisive factor for aerobic granulation in SBR?   总被引:2,自引:0,他引:2  
Li Y  Liu Y  Xu H 《Bioresource technology》2008,99(16):7672-7677
This study investigated the role of sludge retention time (SRT) in aerobic granulation under negligible hydraulic selection pressure. Results showed that no successful aerobic granulation was observed at the studied SRTs in the range of 3-40 days. A comparison analysis revealed that hydraulic selection pressure in terms of the minimum settling velocity would be much more effective than SRT for enhancing heterotrophic aerobic granulation in sequencing batch reactor (SBR). It was shown that SRT would not be a decisive factor for aerobic granulation in SBR.  相似文献   

17.
Selection pressure-driven aerobic granulation in a sequencing batch reactor   总被引:9,自引:0,他引:9  
In recent years, the research on aerobic granulation has been intensive. So far, almost all aerobic granules can form only in sequencing batch reactors (SBR), while the reason is not yet understood. This paper attempts to review the factors involved in aerobic granulation in SBR, including substrate composition, organic loading rate, hydrodynamic shear force, feast-famine regime, feeding strategy, dissolved oxygen, reactor configuration, solids retention time, cycle time, settling time and exchange ratio. The major selection pressures responsible for aerobic granulation are identified as the settling time and exchange ratio. A concept of the minimal settling velocity of bioparticles is proposed; and it is quantitatively demonstrated that the effects of settling time and exchange ratio on aerobic granulation in SBR can be interpreted and unified on the basis of this concept very well. It appears that the formation and characteristics of aerobic granules can be manipulated through properly adjusting either the settling time or the exchange ratio in SBR. Consequently, theoretical and experimental evidence point to the fact that aerobic granulation is a selection pressure-driven cell-to-cell immobilization process.  相似文献   

18.
Let LuxS speak up in AI-2 signaling   总被引:8,自引:0,他引:8  
Quorum sensing is a process of bacterial cell-cell communication that uses small diffusible molecules to coordinate diverse behaviors in response to population density. The only quorum-sensing system shared by Gram-positive and Gram-negative bacteria involves the production of autoinducer-2 (AI-2). The AI-2 synthase LuxS is widely distributed among the Bacteria, which suggests that AI-2 is a language for interspecies communication. However, LuxS is also an integral component of the activated methyl cycle in bacteria. LuxS-based quorum sensing has been intensively studied in the past decade, mostly in relation to the AI-2 molecule and the downstream effects of luxS knockouts; few studies have focused on the gene and protein activity itself. Ongoing attempts to dissect the metabolic and signaling roles of LuxS leave little doubt that unraveling the regulation of luxS expression and cellular LuxS activity is the key to understanding LuxS-based quorum sensing.  相似文献   

19.
Plummer P  Zhu J  Akiba M  Pei D  Zhang Q 《PloS one》2011,6(1):e15876
Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2(-) variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ~100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter.  相似文献   

20.
虽然好氧颗粒污泥(Aerobic Granular Sludge,AGS)具有沉降性能好、高效脱氮除磷以及抗冲击负荷等优点,但是该技术仍然存在颗粒化进程缓慢及容易解体等技术瓶颈.因此,如何克服上述瓶颈是实现好氧颗粒污泥技术在实际污水处理推广的关键.近年来,酰基高丝氨酸内酯(Acyl Homoserine Lactone...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号