首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fragile X mental retardation syndrome is caused by large methylated expansions of a CGG repeat in the FMR1 gene leading to the loss of expression of FMRP, an RNA-binding protein. FMRP is proposed to act as a regulator of mRNA transport or translation that plays a role in synaptic maturation and function. To study the physiological function of the FMR1 protein, mouse and Drosophila models have been developed. The loss-of-function mouse model shows slightly enlarged testes, a subtle behavioral phenotype, and discrete anomalies of dendrite spines similar to those observed in brains of patients. Studies in Drosophila indicate that FXMR plays an important role in synaptogenesis and axonal arborization, which may underlie the observed deficits in flight ability and circadian behavior of FXR mutant flies. The relevance of these studies to our understanding of fragile X syndrome is discussed.  相似文献   

2.
Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent studies have provided evidence of special structures of telomere DNA and genes essential for the phenotypes of ALT cells. The molecular models of the ALT pathway should be validated to elucidate recombination-mediated telomere maintenance and promote the applications to anti-cancer therapy.  相似文献   

3.
Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. The two most common genes mutated in patients with lissencephaly are LIS1 and DCX. LIS1 was the first gene cloned that was important for neuronal migration in any organism, and heterozygous mutations or deletions of LIS1 are found in the majority of patients with lissencephaly, while DCX mutations were found in males with X-linked lissencephaly. In this review, we will discuss how an understanding of the molecular and cellular pathways disrupted in model organisms with Lis1 and Dcx mutations or knock-down not only provide insights into the normal processes of neuronal migration, including neurogenesis, but they also may lead to potential novel therapeutic strategies for these severe cortical malformations.  相似文献   

4.
In recent years, it has become increasingly evident that there is a genetic component to alcoholism. Attempts to isolate alcoholism genes have met with modest success, in part because alcoholism is a multigenic trait. Recently, experimental animal models and novel genetic manipulations have provided several clues as to the specific genes involved in alcoholism, and extensive research has identified many genes that might influence responses to alcohol. Although not all of these might be proven to influence drug sensitivity, research has provided evidence for the involvement of a few genes. Ultimately, findings from animal models that investigate the function of specific genes could aid the development of pharmacotherapies to treat alcohol dependence.  相似文献   

5.
Cigarette smoke-induced animal models of chronic obstructive pulmonary disease support the protease-antiprotease hypothesis of emphysema, although which cells and proteases are the crucial actors remains controversial. Inhibition of either serine or metalloproteases produces significant protection against emphysema, but inhibition is invariably accompanied by decreases in the inflammatory response to cigarette smoke, suggesting that these inhibitors do more than just prevent matrix degradation. Direct anti-inflammatory interventions are also effective against the development of emphysema, as are antioxidant strategies; the latter again decrease smoke-induced inflammation. There is increasing evidence for autoimmunity, perhaps directed against matrix components, as a driving force in emphysema. There is intriguing but controversial animal model evidence that failure to repair/failure of lung maintenance also plays a role in the pathogenesis of emphysema. Cigarette smoke produces small airway remodeling in laboratory animals, possibly by direct induction of fibrogenic growth factors in the airway wall, and also produces pulmonary hypertension, at least in part through direct upregulation of vasoactive mediators in the intrapulmonary arteries. Smoke exposure causes goblet cell metaplasia and excess mucus production in the small airways and proximal trachea, but these changes are not good models of either chronic bronchitis or acute exacerbations. Emphysema, small airway remodeling, pulmonary hypertension, and mucus production appear to be at least partially independent processes that may require different therapeutic approaches.  相似文献   

6.
Organic acidurias or organic acidemias constitute a group of inherited disorders caused by deficient activity of specific enzymes of amino acids, carbohydrates or lipids catabolism, leading to large accumulation and excretion of one or more carboxylic (organic) acids. Affected patients usually present neurologic symptoms and abnormalities, sometimes accompanied by cardiac and skeletal muscle alterations, whose pathogenesis is poorly known. However, in recent years growing evidence has emerged indicating that mitochondrial dysfunction is directly or indirectly involved in the pathology of various organic acidemias. Mitochondrial impairment in some of these diseases are generally due to mutations in nuclear genes of the tricarboxylic acid cycle or oxidative phosphorylation, while in others it seems to result from toxic influences of the endogenous organic acids to the mitochondrion. In this minireview, we will briefly summarize the present knowledge obtained from human and animal studies showing that disruption of mitochondrial homeostasis may represent a relevant pathomechanism of tissue damage in selective organic acidemias. The discussion will focus on mitochondrial alterations found in patients affected by organic acidemias and by the deleterious effects of the accumulating organic acids on mitochondrial pathways that are crucial for ATP formation and transfer. The elucidation of the mechanisms of toxicity of these acidic compounds offers new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group.  相似文献   

7.
Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1), and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1) a common molecular pathway underlying these different neuromuscular diseases, and (2) tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches.  相似文献   

8.
Significant progress has recently been made in our understanding of animal regenerative biology, spurred on by the use of a wider range of model organisms and an increasing ability to use genetic tools in traditional models of regeneration. This progress has begun to delineate differences and similarities in the regenerative capabilities and mechanisms among diverse animal species, and to address some of the key questions about the molecular and cell biology of regeneration. Our expanding knowledge in these areas not only provides insights into animal biology in general, but also has important implications for regenerative medicine and stem-cell biology.  相似文献   

9.
c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of numerous physiological processes during development and in response to stress. Its activity is increased upon phosphorylation by the MAPK kinases, MKK4 and MKK7. Similar to the early embryonic death of mice caused by the targeted deletion of the jnk genes, mice lacking mkk4 or mkk7 die before birth. The inability of MKK4 and MKK7 to compensate for each other's functions in vivo is consistent with their synergistic effect in mediating JNK activation. However, the phenotypic analysis of the mutant mouse embryos indicates that MKK4 and MKK7 have specific roles that may be due to their selective regulation by extracellular stimuli and their distinct tissue distribution. MKK4 and MKK7 also have different biochemical properties. For example, whereas MKK4 can activate p38 MAPK, MKK7 functions as a specific activator of JNK. Here we summarize the studies that have shed light on the mechanism of activation of MKK4 and MKK7 and on their physiological functions.  相似文献   

10.
Animal studies illustrate greater structural and material adaptations of growing bone to exercise than in adult bones but do not define effective training regimes to optimize bone strength in children. Controlled loading studies in turkey, rat, or mouse bones have revealed mechanisms of mechanotransduction and loading characteristics that optimize the modeling response to applied strains. Insights from these models reveal that static loads do not play a role in mechanotransduction and that bone formation is threshold driven and dependent on strain rate, amplitude, and partitioning of the load. That is, only a few cycles of loading are required at any time to elicit an adaptive response, and distributed bouts of loading, incorporating rest periods, are more osteogenic than single sessions of long duration. These parameters of loading have been translated into feasible public health interventions that exploit the insights gained from animal experiments to achieve adaptive responses in children and adolescents. Studies manipulating estrogen receptors (ER) in mice also demonstrate that skeletal sensitivity to loading during the peripubertal period is due to a direct regulation of mechanotransduction pathways by ER, and not just a simple enhancement of cell activity already marshaled by the hypothalamic-pituitary axis. Unfortunately, because the rate and timing of growth in small animals are completely different from those in humans, these models can be poor tools to elucidate periods during growth in youths, during which the skeleton is more sensitive to loading. However, there are insights from studies of human growth that can improve the interpretation of data from such studies of growth and development in animals.  相似文献   

11.
The Usher syndrome (USH) is the most prevalent cause of inherited deaf-blindness. Three clinical subtypes, USH1–3, have been defined, and ten USH genes identified. The hearing impairment due to USH gene defects has been shown to result from improper organisation of the hair bundle, the sound receptive structure of sensory hair cells. In contrast, the cellular basis of the visual defect is less well understood as this phenotype is absent in almost all the USH mouse models that faithfully mimic the human hearing impairment. Structural and molecular interspecies discrepancies regarding photoreceptor calyceal processes and the association with the distribution of USH1 proteins have recently been unravelled, and have led to the conclusion that a defect in the USH1 protein complex-mediated connection between the photoreceptor outer segment and the surrounding calyceal processes (in both rods and cones), and the inner segment (in rods only), probably causes the USH1 retinal dystrophy in humans.  相似文献   

12.
Muscular dystrophies are a clinically and genetically heterogeneous group of disorders that show myofiber degeneration and regeneration. Identification of animal models of muscular dystrophy has been instrumental in research on the pathogenesis, pathophysiology, and treatment of these disorders. We review our understanding of the functional status of dystrophic skeletal muscle from selected animal models with a focus on 1) the mdx mouse model of Duchenne muscular dystrophy, 2) the Bio 14.6 delta-sarcoglycan-deficient hamster model of limb-girdle muscular dystrophy, and 3) transgenic null mutant murine lines of sarcoglycan (alpha, beta, delta, and gamma) deficiencies. Although biochemical data from these models suggest that the dystrophin-sarcoglycan-dystroglycan-laminin network is critical for structural integrity of the myofiber plasma membrane, emerging studies of muscle physiology suggest a more complex picture, with specific functional deficits varying considerably from muscle to muscle and model to model. It is likely that changes in muscle structure and function, downstream of the specific, primary biochemical deficiency, may alter muscle contractile properties.  相似文献   

13.
14.
GnRH deficiency: new insights from genetics   总被引:3,自引:0,他引:3  
The acquisition of a sexually dimorphic phenotype is a critical event in mammalian development. Hypogonadotropic hypogonadism (HH) results from impaired secretion of GnRH. The patients display with delayed puberty, micropenis and cryptorchidism in the male reflecting gonadotropin insufficiency, and amenorrhea in the female. Kallmann's syndrome (KS) is defined by the association of HH and anosmia or hyposmia (absent smelling sense). Segregation analysis in familial cases has demonstrated diverse inheritance patterns, suggesting the existence of several genes regulating GnRH secretion. The X-linked form of the disease was associated with a genetic defect in the KALI gene located on the Xp22.3 region. KAL1 gene encodes an extracellular matrix glycoprotein anosmin-1, which facilitates neuronal growth and migration. Abnormalities in the migratory processes of the GnRH neurons with the olfactory neurons explain the association of HH with anosmia. Recently, mutations in the FGF recepteur 1 (FGFR1) gene were found in KS with autosomal dominant mode of inheritance. The role of FGFR1 in the function of reproduction requires further investigation. Besides HH with anosmia, there are isolated HH (IHH). No human GnRH mutations have been reported although hypogonadal mice due to a GnRH gene deletion exist. In patients with idiopathic HH and without anosmia an increasing number of GnRH receptor (GnRHR) mutations have been described which represent about 50% of familial cases. The clinical features are highly variable and there is a good relationship between genotype and phenotype. A complete loss of function is associated with the most severe phenotype with resistance to pulsatile GnRH treatment, absence of puberty and cryptorchidism in the male. In contrast, milder loss of function mutations causes incomplete failure of pubertal development. The preponderant role of GnRH in the secretion of LH by the gonadotrophs explains the difference of the phenotype between male and female with partial GnRH resistance. Affected females can have spontaneous telarche and normal breast development while affected males exhibit no pubertal development but normal testis volume, a feature described as "fertile-eunuch". High-dose pulsatile GnRH has been used to induce ovulation. Another gene, called GPR54, responsible for idiopathic HH has been recently described by segregation analysis in two different consanguineous families. The GPR54 gene is an orphan receptor, and its putative ligand is the product of the KISS-1 gene, called metastine. Their roles in the function of reproduction are still unknown.  相似文献   

15.
16.
17.
The enzyme lecithin cholesterol acyl transferase is responsible for the synthesis of most of the cholesteryl esters in plasma, and therefore plays a key role in lipoprotein metabolism. The relationship between the structure and function of lecithin cholesterol acyl transferase has been extensively studied in the past years, and new data appeared in 1999 documenting the substrate specificity and physiological role of lecithin cholesterol acyl transferase. The discovery of natural mutants, together with the proposal of a three-dimensional model for the enzyme, has provided new tools to unravel the function of specific residues of lecithin cholesterol acyl transferase. The use of transgenic animals and the production of knock-out lecithin cholesterol acyl transferase mice has further contributed to the understanding of the lecithin cholesterol acyl transferase 'in vivo' function. Evidence for a protective role of lecithin cholesterol acyl transferase against the development of atherosclerosis through the hydrolysis of oxidized lipids was recently proposed. Lecithin cholesterol acyl transferase patterns in several pathologies were further clarified. These newer developments are reviewed here.  相似文献   

18.
Although iron is a metal involved in many vital processes due to its redox capacity, body iron overloads lead to tissue damage, including the cardiovascular system. While cardiomyopathy was the focus since the 1960s, the impact on the vasculature was comparatively neglected for about 40 years, when clinical studies correlating iron overload, oxidative stress, endothelial dysfunction, arterial stiffness and atherosclerosis reinforced an “iron hypothesis”. Due to controversial results from some epidemiological studies investigating atherosclerotic events and iron levels, well-controlled trials and animal studies provided essential data about the influence of iron, per se, on the vasculature. As a result, the pathophysiology of vascular dysfunction in iron overload have been revisited. This review summarizes the knowledge obtained from epidemiological studies, animal models and “in vitro cellular systems in recent decades, highlighting a more harmful than innocent role of iron excess for the vascular homeostasis, which supports our proposal to hereafter denominate “iron overload vasculopathy”. Additionally, evidence-based potential therapeutic targets are pointed out to be tested in pre-clinical research that may be useful in cardiovascular protection for patients with iron overload syndromes.  相似文献   

19.
20.
Iron mobilization in three animal models of inflammation   总被引:2,自引:0,他引:2  
The effect of acute, subchronic, and chronic experimental models of inflammation upon hematocrit, hemoglobin, serum iron and ferritin iron and nonheme iron concentration in the liver and spleen has been studied in the rat. In the acute model (carrageenan oedema) no iron mobilization took place, whereas in the chronic models differences in iron mobilization were observed, related to their different chronicity and to the time elapsed from induction. The carrageenan-induced granuloma (from 12 h to 8 days) (subchronic model) was accompanied by a decrease of plasma iron (12 and 24 h), a later decrease of the hematocrit values (2 and 4 days) and high ferritin and nonheme iron concentrations in the liver and spleen for 4 days, followed by a tendency to return to the control values. The anemia in the adjuvant arthritis (from 1 to 4 weeks after induction) (chronic model) was observed at 7 days and is related to increased iron stores in the liver and spleen. However, the iron store levels in liver decreased and fell later below control values. The increase of ferritin and nonheme iron concentrations may be responsible for the reduced availability of iron release from tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号