首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Hox and other Antennapedia (ANTP)-like homeobox gene subclasses - ParaHox, EHGbox, and NK-like - contribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes' origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster.  相似文献   

2.
The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.  相似文献   

3.
4.
The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14   总被引:7,自引:0,他引:7  
SUMMARY The amphioxus ( Branchiostoma floridae ) Hox cluster is a model for the ancestral vertebrate cluster, prior to the hypothesized genome-wide duplications that may have facilitated the evolution of the vertebrate body plan. Here we describe the posterior (5') genes of the amphioxus cluster, and report the isolation of four new homeobox genes. Vertebrates possess 13 types of Hox gene (paralogy groups), but we show that amphioxus possesses more than 13 Hox genes. Amphioxus is now the first animal in which a Hox14 gene has been found. Our mapping and phylogenetic analysis of amphioxus "Posterior Class" Hox genes reveals that these genes are evolving at a faster rate in deuterostomes than in protostomes, a phenomenon we term Posterior Flexibility.  相似文献   

5.
Comparison of whole genome sequences of representative animals enables reconstruction of the ancestral bilaterian genome: the starting point from which most extant animal lineages evolved. The Hox gene cluster patterns the anterior-posterior axis of bilaterians. Here we show that this cluster was embedded within a larger homeobox gene cluster, the Super-Hox cluster, in the ancestral bilaterian. This Super-Hox cluster contained at least eight genes alongside the core Hox genes ('EuHox' genes).  相似文献   

6.
7.
Hox genes,responsible for regional specification along the anteroposterior axis in embryogenesis,are found as clusters in most eumetazoan genomes sequenced to date.Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters,derived from the so-called two-round whole genome duplications (2R-WGDs),are observed.Overall,the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans.A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast,existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization.For this group of species,whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates,therefore the number of Hox clusters may not serve as a good indicator of their ploidy level.  相似文献   

8.
Molecular evidence suggests that Acoelomorpha, a proposed phylum composed of acoel and Nemertodermatida flatworms, are the most basal bilaterian animals. Hox and ParaHox gene complements characterised so far in acoels consist of a small set of genes, comprising representatives of anterior, central and posterior genes, altogether Hox and ParaHox, but no PG3-Xlox representatives have been reported. It has been proposed that this might be the ancestral Hox repertoire in basal bilaterians. However, no studies of the other members of the group, the Nemertodermatida, have been done. In order to get a more complete picture of the basal bilaterian Hox and ParaHox complement, we have analysed the Hox/ParaHox complement of the nemertodermatid Nemertoderma westbladi. We have found representatives of two central and one posterior Hox genes, as well as an Xlox and a Caudal ParaHox gene. From our data we conclude that a PG3-Xlox gene was present in the ancestor of bilaterians. These findings support the speculation that basal bilaterians already had the beginnings of the extended central Hox set, driving back gene duplications in the central part of the Hox cluster deeper in phylogeny than previously suggested.  相似文献   

9.
The Hox gene cluster has been a key paradigm for a generation of developmental and evolutionary biologists. Since its discovery in the mid-1980's, the identification, genomic organization, expression, colinearity, and regulation of Hox genes have been immediate targets for study in any new model organism, and metazoan genome projects always refer to the structure of the particular Hox cluster(s). Since the early 1990's, it has been dogma that vertebrate Hox clusters are composed of thirteen paralogous groups. Nonetheless, we showed that in the otherwise prototypical cephalochordate amphioxus (Branchiostoma floridae), the Hox cluster contains a fourteenth Hox gene, and very recently, a 14(th) Hox paralogous group has been found in the coelacanth and the horn shark, suggesting that the amphioxus cluster was anticipating the finding of Hox 14 in some vertebrate lineages. In view of the pivotal place that amphioxus occupies in vertebrate evolution, we thought it of considerable interest to establish the limits of its Hox gene cluster, namely resolution of whether more Hox genes are present in the amphioxus cluster (e.g., Hox 15). Using two strategies, here we report the completion and characterization of the Hox gene content of the single amphioxus Hox cluster, which encompasses 650 kb from Hox1 to Evx. Our data have important implications for the primordial Hox gene cluster of chordates: the prototypical nature of the single amphioxus Hox cluster makes it unlikely that additional paralogous groups will be found in any chordate lineage. We suggest that 14 is the end.  相似文献   

10.
Sipunculan ParaHox genes   总被引:7,自引:0,他引:7  
SUMMARY Our perspective on the origin and evolution of the Hox gene cluster changed with the discovery of the ParaHox gene cluster in amphioxus (Cephalochordata; Branchiostoma floridae ) ( Brooke et al. 1998 ). The ParaHox gene cluster contains three homeobox genes (Gsx, Xlox, Cdx) and is deduced to be a paralogue (evolutionary sister) of the Hox gene cluster. If this deduction is correct, animals with Hox genes should also possess ParaHox genes. Paradoxically, however, only deuterostome animals have thus far been shown to contain all three ParaHox genes. Here we report the cloning of all three ParaHox genes from each of two species within the phylum Sipuncula. This is the first demonstration of all three ParaHox genes in the genome of a protostome animal and confirms that the common ancestor of protostomes and deuterostomes possessed all three ParaHox genes. Furthermore, it implies that the ParaHox genes are of sufficient functional importance in both protostomes and deuterostomes that they have all been conserved in both of these bilaterian clades.  相似文献   

11.
"Hox cluster type" genes have sparked intriguing attempts to unite all metazoan animals by a shared pattern of expression and genomic organization of a specific set of regulatory genes. The basic idea, the zootype concept, claims the conservation of a specific set of "Hox cluster type genes" in all metazoan animals, i.e., in the basal diploblasts as well as in the derived triploblastic animals. Depending on the data used and the type of analysis performed, different opposing views have been taken on this idea. We review here the sum of data currently available in a total evidence analysis, which includes morphological and the most recent molecular data. This analysis highlights several problems with the idea of a simple "Hox cluster type" synapomorphy between the diploblastic and triploblastic animals and suggests that the "zootype differentiation" of the Hox cluster most likely is an invention of the triploblasts. The view presented is compatible with the idea that early Hox gene evolution started with a single proto-Hox (possibly a paraHox) gene. J. Exp. Zool. (Mol. Dev. Evol.) 291:169-174, 2001.  相似文献   

12.
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.  相似文献   

13.
Hox genes and the phylogeny of the arthropods   总被引:12,自引:0,他引:12  
The arthropods are the most speciose, and among the most morphologically diverse, of the animal phyla. Their evolution has been the subject of intense research for well over a century, yet the relationships among the four extant arthropod subphyla - chelicerates, crustaceans, hexapods, and myriapods - are still not fully resolved. Morphological taxonomies have often placed hexapods and myriapods together (the Atelocerata) [1, 2], but recent molecular studies have generally supported a hexapod/crustacean clade [2-9]. A cluster of regulatory genes, the Hox genes, control segment identity in arthropods, and comparisons of the sequences and functions of Hox genes can reveal evolutionary relationships [10]. We used Hox gene sequences from a range of arthropod taxa, including new data from a basal hexapod and a myriapod, to estimate a phylogeny of the arthropods. Our data support the hypothesis that insects and crustaceans form a single clade within the arthropods to the exclusion of myriapods. They also suggest that myriapods are more closely allied to the chelicerates than to this insect/crustacean clade.  相似文献   

14.
Wang X  Zhang J 《Genomics》2006,88(1):34-43
Rhox is a recently identified cluster of 12 X-linked homeobox genes in mice. The expression pattern of Rhox genes during postnatal testis development corresponds to their chromosomal position, much like the colinear gene regulation of the Hox gene clusters during animal embryonic development. We here report the identification of 18 additional Rhox genes and 3 pseudogenes in mice. Comparative analyses of the mouse, rat, human, dog, cow, opossum, and chicken genomes suggest that the Rhox cluster originated in the common ancestor of primates and rodents. It subsequently underwent two remarkable expansions, first in the common ancestor of mice and rats and then in mice. Positive selection promoting amino acid substitutions was detected in some young Rhox genes, suggesting adaptive functional diversification. The recent expansions of the Rhox cluster provide an opportunity to study the mechanism and origin of colinear gene regulation, but they may also undermine the utility of mouse models for understanding the development and physiology of the human reproductive system.  相似文献   

15.
The correct identification of homologous Hox genes within and between diplo- and triploblastic animals is of crucial importance for recent hypotheses on the anagenetic evolution of animal bauplans. While the homology discussion in general has reached new heights, we apply traditional homology criteria to assign homology to Hox genes from diploblastic animals. Comparison of theTrox-2gene from the presumably most basal metazoan animal, the placozoanTrichoplax adhaerens,to other Hox genes suggests the presence of unambiguous homologs in Hydrozoa and Scyphozoa and the absence of any specific homolog in triploblasts. Furthermore, the comparisons provide support for the idea that Hox genes—at least in diploblastic animals—are composed of functional subunits (modules), which to some degree have undergone independent evolution. The findings are not readily compatible with the existence of the “zootype” in diploblastic animals.  相似文献   

16.
The dawn of bilaterian animals: the case of acoelomorph flatworms   总被引:9,自引:0,他引:9  
The origin of the bilaterian metazoans from radial ancestors is one of the biggest puzzles in animal evolution. A way to solve it is to identify the nature and main features of the last common ancestor of the bilaterians (LCB). Recent progress in molecular phylogeny has shown that many platyhelminth flatworms, regarded for a long time as basal bilaterians, now belong to the lophotrochozoan protostomates. In contrast, the LCB is now considered a complex organism bearing several features of modern bilaterians. Here we discuss an alternative view, in which acoelomorph (Acoela + Nemertodermatida) flatworms, which do not belong to the Platyhelminthes, represent the earliest extant bilaterian clade. Sequences from ribosomal and other nuclear genes, Hox cluster genes, and reinterpretation of some morphological features strongly support the basal position of acoelomorphs arguing against a complex LCB. This reconstruction backs the old planuloid-acoeloid hypothesis and may help our understanding of the evolution of body axes, Hox genes and the Cambrian explosion.  相似文献   

17.

Background

Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state).

Results

Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available.

Conclusion

Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
  相似文献   

18.
19.
20.
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号