首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The responses of reproduction and growth to climate warming are important issues to predict the fate of plant populations at high latitudes. Spring ephemerals inhabiting cool-temperate forests grow better under cool conditions, but how reproductive performance is influenced by warm weather is unclear. The phenological and physiological responses of reproduction and vegetative growth to warm temperature and light conditions were evaluated in the spring ephemeral Gagea lutea. Leaf and bract physiological activities, bulb growth, and seed production were compared among reproductive plants grown in forest, open, and greenhouse (GH; warming manipulation in the open site) plots. In vitro pollen germination ability was tested under various temperatures. In the GH, leaf and bract photosynthetic activities decreased rapidly at the fruiting stage, but dark respiration rates remained high, resulting in higher carbon exhaust in warm conditions. Both leaf and bract sizes and their longevities were reduced in the GH. Annual bulb growth was largest in the forest plot and smallest in the GH plot. Pollen germination was strongly inhibited at high temperature (30 °C). Fruit and seed productions were decreased only in the GH plot. Both vegetative and reproductive activities were negatively affected by warm temperature, resulting in less vegetative growth and lower seed-set, whereas an understory habitat was beneficial for vegetative growth and showed similar seed production to an open habitat over the experimental period. Decreasing population dynamics of spring ephemerals was predicted in response to future warming climate not only by growth inhibition but also by restriction of seed production.  相似文献   

2.
Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest‐associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest–grassland biome boundaries.  相似文献   

3.
Ecophysiology of exotic and native shrubs in Southern Wisconsin   总被引:14,自引:0,他引:14  
Summary We compared seasonal trends in photosynthesis of two naturalized exotic shrubs (Rhamnus cathartica and Lonicera X bella) and two native shrubs (Cornus racemosa and Prunus serotina) in open and understory habitats in southern Wisconsin. We examined the relationships between resource availability and leaf photosynthetic performance in these four species. All four species had similar relationships between leaf nitrogen (N) content and photosynthetic rate, but the species differed in absolute leaf N content and therefore in photosynthetic rates. Maximum daily photosynthetic rates of all species were significantly correlated with leaf N content in the open habitat, but not in the understory, where low light availability was the major limitation to photosynthesis. Extended leaf longevity was important in the forest understory because it allowed shrubs to take advantage of high light availability at times when the overstory canopy was leafless. Early leaf emergence was more important than late senescence: from 27% to 35% of the annual carbon gain of P. serotina, R. cathartica, and L. X bella occurred prior to leaf emergence of C. racemosa, the species with the shortest leaf life span. Extended leaf longevity of exotic shrubs may help explain their persistence in the understory habitat, but it contributed relatively less to their annual carbon gain in the open habitat.  相似文献   

4.
膝柄木是我国极度濒危植物,也是广西滨海过渡带天然植被的重要组成树种.为了解光因子对膝柄木天然更新的限制影响,该文对林缘、林窗、林下三种不同光照生境下膝柄木幼树的生理和生长指标的年际变化特征进行了研究.结果表明:(1)光合有效辐射不足影响了膝柄木幼树的生长.林下幼树的地径、株高和叶面积增长量显著降低,而生长于光照充足林缘...  相似文献   

5.
非结构性碳水化合物(Non-structural Carbohydrates, NSCs)是植物生长代谢过程中重要的能量来源。通过在华南热带次生林进行氮磷添加试验,探究不同林层植物叶片NSCs的季节变化及其对氮磷添加的响应,取样时间为2019年1月、4月、7月和10月。结果表明:1)植物叶片NSCs存在显著的种间差异,磷(P)添加对叶片淀粉和NSCs含量具有显著影响,且物种与磷添加的交互作用显著影响叶片淀粉含量。2)黑嘴蒲桃和紫玉盘叶片NSCs含量对氮(N)添加的响应较为敏感,而白车和竹节叶片NSCs含量对P添加的响应较为敏感,氮磷同时添加(+NP)对植物叶片NSCs的增效作用最好。3)植物叶片NSCs存在显著的季节性变化,且季节与林层间的交互作用对叶片可溶性糖和NSCs含量具有显著影响。4)不同林层植物对氮磷添加的响应不同,氮磷添加使林下层植物叶片可溶性糖含量增高,林冠层降低,在干季,N添加会使林下层植物叶片淀粉含量增高,林冠层降低。P添加的影响恰好与之相反。在湿季,氮磷添加使林下层和林冠层植物叶片的淀粉含量增加。5)林冠层植物叶片NSCs含量高于林下层,且林下层植物叶片NSCs含量...  相似文献   

6.
The small-scale distribution of an understory herb, Heracleum lanatum, was evaluated in terms of leaf temperature and water relations limitations due to a large leaf size (630 cm2). Diurnal variations in transpiration (4 to 60 mg m−2 s−1) were influenced by fluctuations in solar irradiance, wind speed, leaf temperature and stomatal conductance. Computer simulations indicated that leaf temperatures in a forest clearing would be > 12 C above air temperature, with maximum transpiration rates of 140 mg m−2 s−1, and daily water loss to be over 200% greater than values at natural understory locations. Simulations of nocturnal temperature relations indicated ~100 W m −2 less incident longwave irradiance in the forest clearing as compared to the understory (560 vs. 660 W m−2 at 400 hr). This difference led to predicted leaf temperatures being as low as 6 C below air temperature in the forest clearing while measured leaf temperatures in the forest understory were within 1.5 C of air temperature throughout the night. Furthermore, minimum air temperatures were at or below 6 C on 36% of the nights during the summer growth period indicating that in open areas leaves of H. lanatum would frequently be below 0 C and subject to possible freeze damage. Heracleum lanatum may be more abundant in the shaded understory of the subalpine forest because exposure in open environments would result in high leaf temperatures and increased transpirational water loss during the day, as well as low leaf temperatures with the possibility of freeze damage at night.  相似文献   

7.
Secondary forest has the potential to act as an important habitat for biodiversity and restoring ecological benefits. Functional diversity, which includes morphological and behavioral traits that mediate species interactions with the surrounding environment, relates to the resilience of ecosystems. To assess the relationship between habitat structural differences in primary and secondary forest and the resultant differences in functional diversity of avian species, we followed 11 mixed-species flocks at the Biological Dynamics of Forest Fragments Project, near Manaus, Brazil. We used remote sensing LiDAR to assess which three-dimensional forest structural features are most closely associated with variation in species richness and functional diversity in secondary and primary tropical forest flocks. The species richness of flocks in primary forest increased in areas with higher elevation and higher leaf area density in the understory and subcanopy but was not correlated with habitat structure in secondary forest. Functional diversity increased at lower elevations and with a denser subcanopy in both primary forest and secondary forest but only increased with greater understory leaf area density in primary forest. Together, these results indicate that a dense subcanopy and understory can be important for mixed-species flocks and that flock richness and functional diversity can be predicted by vegetation structure.  相似文献   

8.
The assessments of the carbon pool and rate of plant biomass production, phytodetritus destruction, new formations of humic matters, and removal of water-soluble decomposition products for the forest ecosystems of the forest tundra and the northern and southern parts of the Central Siberian taiga were given. The rates of the main processes (organic-matter production and degradation) were demonstrated to be balanced in the ecosystems of the forest tundra. The larch forests of the northern taiga serve as a stock for a C atmosphere, which are equivalent to 32–34% of net primary production (NPP). The secondary birch growth where the understory needle-leaved trees have been formed and the primary old-growth fir forests are characterized by the balance of the main carbon fluxes in the southern taiga. The birch forests where the understory trees are just being formed and the fir forests at the age of 50–90 years serve as a stock for an average of 26% of carbon extracted as dioxide to make NPP.  相似文献   

9.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

10.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

11.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   

12.
不同生境朝鲜淫羊藿生长与光合特征   总被引:2,自引:0,他引:2  
选择朝鲜淫羊藿野外生存的林缘、林窗和林下3种生境,研究朝鲜淫羊藿形态特征、光合特征、叶绿素含量、生物量积累及分配对不同光环境的响应。结果表明,朝鲜淫羊藿株高、茎径、总叶面积等形态指标随光照强度减弱明显减小,各生境间差异显著。随光照强度降低,朝鲜淫羊藿的净光合速率、水分利用效率、气孔限制值、叶绿素a/b降低,而胞间CO2浓度、光能利用效率、叶绿素b和总叶绿素含量增加。各器官生物量积累随光照强度减弱而降低,各生境间差异极显著,其中,林缘地上生物量是林窗的1.6倍,林下的3.1倍。生物量分配方面,叶生物量比、叶面积比率、比叶面积随光照强度减弱而增加,根状茎生物量比和根冠比降低,林缘、林窗与林下差异极显著;林下、林缘、林窗朝鲜淫羊藿地上部分生物量比分别为0.733、0.659、0.664,林下朝鲜淫羊藿与林缘、林窗存在不同的光利用策略和生存策略。朝鲜淫羊藿作为极易遭受利用和生境破坏威胁的物种,宜在适度荫闭的林缘和疏林下开展野生抚育或仿生态栽培。  相似文献   

13.
Van Bael SA  Brawn JD 《Oecologia》2005,145(4):658-668
A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e. decreased arthropod damage to trees) are not always observed and their context is not well understood. Because productivity is one factor that is expected to influence trophic cascades, we compared the extent to which birds indirectly limit herbivore damage to trees in two lowland Neotropical forests that differed in seasonality of leaf production and rainfall. We compared the effects of bird predation on local arthropod densities and on damage to foliage through a controlled experiment using bird exclosures in the canopy and understory of two forests. We found that birds decreased local arthropod densities and leaf damage in the canopy of the drier site during periods of high leaf production, but not in the wetter forest where leaf production was low and sporadic throughout the year. Birds had no effect on arthropod abundances and leaf damage in the understory where leaf production and turnover rates were low. In support of these experimental interpretations, although we observed that arthropod densities were similar at the two sites, bird densities and the rate at which birds captured arthropods were greater at the drier, seasonally productive site. The influence of top-down predation by birds in limiting herbivorous insects appears to be conditional and most important when the production and turnover of leaves are comparatively high. Figure legends were missing in the original article published under Plant Animal Interactions, Oecologia (2005) 143: 106–166. The complete article is repeated here. The online version of the original article can be found at  相似文献   

14.
Seedling recruitment limitations create a demographic bottleneck that largely determines the viability and structure of plant populations and communities, and pose a core restriction on the colonization of novel habitat. We use a shade‐tolerant, invasive grass, Microstegium vimineum, to examine the interplay between seed and establishment limitations – phenomena that together determine recruitment success but usually are investigated individually. We add increasing amounts of seed to microhabitats containing variable levels of leaf litter thickness – with reduced leaf litter simulating disturbance – to investigate whether reduced seed limitation overcomes the establishment limitation posed by litter cover. We do this across gradients in understory light, moisture and temperature, and quantify germination, survival, and then per capita adult biomass and reproduction in order to understand the implications for invasion across the landscape. We find that the combined effects of seed and establishment limitation influence recruitment; however, propagule pressure overwhelms the inhibitory effects of leaf litter thickness. Leaf litter reduces germination by 22–57% and seedling survival by 13–15% from that observed on bare soil. However, density‐dependent reproduction compensates as 1–3 plants can produce far more seeds (approx. 525) than are required for persistence. As such, just a few plants may establish in understory forest habitat and subsequently overwhelm establishment barriers with copious propagule production. These results, for a widespread, invasive plant, are consistent with the emerging perspective for native plants that seed and establishment limitation jointly influence recruitment. The ability for an exotic plant species to compensate for low population densities with high per capita seed production, that then overrides establishment limitations, makes its invasive potential daunting. Further work is required to test if this is a common mechanism underlying plant invasions.  相似文献   

15.
Diurnal heliotropic leaf movements, microclimate, stomatal conductance and leaf water potential of two leguminous species, Strophostyles helvola and Amphicarpa bracteata, were measured in three different habitats over two growing seasons. The habitats occurred along an environmental gradient from an open, sandy beach to a closed canopy deciduous forest understory. At the beach site, heliotropism in S. helvola resulted in higher irradiances in morning and afternoon hours and lower irradiances during midday periods compared to an horizontal leaf. In an exposed forest site A. bracteata responded within minutes to penetration of the direct solar beam by orienting its leaves to steep angles. In contrast, plants in closed canopy locations showed little diurnal leaf movement. The combined results of leaf energy budget calculations and plant physiological responses suggest that ecological ramifications of these movements vary with habitat. We hypothesize that heliotropism in open habitats increases water use efficiency and maximizes carbon returns on plant investment in photosynthesis. Conversely, we hypothesize that leaf movements in understory habitats represent a morphological mechanism to avoid thermal damage, photoinhibition of the photosynthetic apparatus, and water stress associated with high irradiances.  相似文献   

16.
Insect herbivory has been observed to be affected by habitat loss and fragmentation, although the mechanisms by which these anthropogenic disturbances affect this process are not well understood. To aid in clarifying this issue, we assessed the relation between forest cover and leaf damage caused by herbivorous insects on a representative tropical forest understory plant family, the Rubiaceae. We measured leaf area loss of Rubiaceae plants in 20 forest sites located in the Brazilian Atlantic forest, and also tested whether variation in forest cover, abundance of insectivorous birds (predators) and of Rubiaceae plants (resources) could explain the observed variation in leaf damage. Herbivory levels varied between 2.6 and 12.5 percent leaf area lost and increased with decreasing forest cover, whereas the other explanatory variables did not provide additional explanatory power. Therefore, forest loss appears to be the main driver of changes in local herbivory, and ecological processes such as top-down and bottom-up control may not account for the deforestation-related increase in herbivory levels. Other mechanisms, for example leaf quality and/or the influence of the adjoining land uses, have to be explored in future studies.  相似文献   

17.
Seasonal and spatial patterns of light availability were investigated in the understory of a small fragment (approximately 1300 m2) of a riparian deciduous forest of the Kokai River in central Japan dominated byQuercus acutissima Carruth., with the aim to understand the characteristics of microsite light availability forArisaema heterophyllum Blume, a threatened plant species uniquely associated with the riparian habitat. Diffuse site factor, which is the ratio of PFD (photon flux density, 400–700 nm) at a microsite to the open sky reference under diffuse light condition, was shown to be a satisfactory index for the evaluation of light availability for the understory plants in the habitat. Diffuse site factor 1,0 1,000 understory microsites along a 20 m transect from the edge to the interior of the forest, showed conspicuous seasonal changes in both mean and variation. Light availability decreased with seasonal tree canopy regeneration, with the highest spatial heterogeneity being recorded during the time of canopy closure. Auto-correlations of microsite light availability between different seasons were considerably high, suggesting the stability of relative light availability for individual microsites throughout the growing season ofA. heterophyllum. Fairly high light availability during summer season, which surpassed 20% of the open sky reference in most microsites, would be important for the growth and persistence of summer herbaceous plants likeA. heterophyllum.  相似文献   

18.
Van Bael SA  Brawn JD 《Oecologia》2005,143(1):106-116
A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e. decreased arthropod damage to trees) are not always observed and their context is not well understood. Because productivity is one factor that is expected to influence trophic cascades, we compared the extent to which birds indirectly limit herbivore damage to trees in two lowland Neotropical forests that differed in seasonality of leaf production and rainfall. We compared the effects of bird predation on local arthropod densities and on damage to foliage through a controlled experiment using bird exclosures in the canopy and understory of two forests. We found that birds decreased local arthropod densities and leaf damage in the canopy of the drier site during periods of high leaf production, but not in the wetter forest where leaf production was low and sporadic throughout the year. Birds had no effect on arthropod abundances and leaf damage in the understory where leaf production and turnover rates were low. In support of these experimental interpretations, although we observed that arthropod densities were similar at the two sites, bird densities and the rate at which birds captured arthropods were greater at the drier, seasonally productive site. The influence of top-down predation by birds in limiting herbivorous insects appears to be conditional and most important when the production and turnover of leaves are comparatively high.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Summary Chamaedorea bartlingiana is a dioecious palm that grows in the cloud forest understories of the Venezuelan Andes. Age and sexual differences in phenology and reproductive patterns were studied in labelled individuals of all age categories. This species has long-lived leaves and low leaf production, both characteristic of understory plants. Growth rates are lower in juveniles than in adults and in females than in males, as in other palms. Male and female individuals show different reproductive patterns. Male inflorescences are always produced at the same rate and the probability of surviving until anthesis is constant. Females produce reproductive buds at the same rate as males, but these buds have a 35% probability of becoming a ripe infrutescence if the plant has infrutescences already growing, and 70% if it does not. This pattern and the slow growth of inflorescences (1 year for males from bud to flowers, 2 years for females from bud to ripe fruits) cause a pluriannual reproductive pattern at the population level. Field germination does not follow this pattern, but shows one annual peak probably related to environmental conditions.  相似文献   

20.
In forest ecosystems, fine roots have a considerable role in carbon cycling. To investigate the seasonal pattern of fine root demography, we observed the fine root production and decomposition processes using a minirhizotron system in a Betula-dominated forest with understory evergreen dwarf bamboo. The length density of fine roots decreased with increasing soil depth. The seasonal patterns of each fine root demographic parameter (length density of visible roots, rates of stand-total fine root production and decomposition) were almost the same at different soil depths. The peak seasons of the fine root demographic parameters were observed in the order: stand-total fine root production rate (late summer) > length density of the visible roots (early autumn) > stand-total fine root decomposition rate (autumn, and a second small peak in spring). The fine root production rate was high in the latter part of the plant growing season. Fine root production peaked in late summer and remained high until the end of the tree defoliation season. The higher stand-total fine root production rate in autumn suggests the effect of understory evergreen bamboo on the stand-total fine root demography. The stand-total fine root decomposition rate was high in late autumn. In the snow-cover period, the rates of both fine root production and decomposition were low. The fine root demographic parameters appeared to show seasonal patterns. The fine root production rate had a clearer seasonality than the fine root decomposition rate. The seasonal pattern of stand-total fine root production rate could be explained by both overstory and understory above-ground productivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号