首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Total DNAs of plants regenerated from immature embryo-derived 2-month-old embryogenic calli of wheat (cultivars Florida 302, Chris, Pavon, RH770019) were probed with six maize mitochondrial genes (atpA, atp6, apt9, coxI, coxII, rrn18-rrn5), three hypervariable wheat mitochondrial clones (K, K3, X2), five random pearl millet mitochondrial clones (4A9, 4D1, 4D12, 4E1, 4E11) and the often-used wheat Nor locus probe (pTA71), in order to assess the molecular changes induced in vitro. In addition, protoplast-derived plants, and 24-month-old embryogenic and non-embryogenic calli and cell suspension cultures of Florida 302 were also analyzed. No variation was revealed by the wheat or millet mitochondrial clones. Qualitative variation was detected in the nonembryogenic suspension culture by three maize mitochondrial genes (coxI, rrn18-rrn5, atp6). A callus-specific 3.8-kb Hind III fragment was detected in all four cultivars after hybridization with the coxI gene. The organization of the Nor locus of the plants regenerated from Florida 302 and Chris was stable when compared to their respective control plants and calli. The Nor locus in regenerants of Pavon and RH, on the other hand, was found to be variable. However, Nor locus variability was not observed in 14 individual seed-derived control plants from either Pavon or RH sources. In Pavon, a 3.6-kb Taq I or a 5.6-kb Bam HI+ Eco RI fragment was lost after regeneration. In one of the RH regenerants, which lost a fragment, an additional fragment was observed.  相似文献   

3.
4.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

5.
Molecular analysis of the transgenes bar and gus was carried out over successive generations in six independent transgenic lines of wheat, until the plants attained homozygosity. Data on expression and integration of the transgenes is presented. Five of the lines were found to be stably transformed, duly transferring the transgenes to the next generation. The copy number of the transgenes varied from one to five in the different lines. One line was unstable, first losing expression of and then eliminating both the transgenes in R3 plants. Although the gus gene was detected in all the lines, GUS expression had been lost in R2 plants of all but one line. Rearrangement of transgene sequences was observed, but it had no effect on gene expression. All the stable lines were found to segregate for transgene activity in a Mendelian fashion.  相似文献   

6.
7.
The potential of a genome-substituted form Avrolata (AABBUU) as a genetic system in genomic and chromosome manipulations for gene transfer from the wild species Aegilops umbellulata Eig. (UU) to cultivated wheat was studied. It was shown that plants combining resistance to leaf brown rust with high productivity may be produced from this form by classical hybridization procedures. The resistance gene introduced to line R-12 is dominant and probably identical to the Lr9 gene. By N-banding, chromosome staining technique and gliadin electrophoresis, the structural changes in chromosomes 1A, 2A, 4B, 6B, 7B, 1D, and 2D of the resistant line R-12 were revealed.  相似文献   

8.
9.
The comparative uptake of four perfluorinated carboxylic acids (PFCAs) by wheat (Triticum aestivum L.) grown in nutrient solution was investigated. Wheat is the main food crop in northern China and may become a potential pathway of human exposure to these PFCAs. The uptake of four PFCAs from water at a fixed concentration (1 μg/mL) increased over time, approaching a steady state, and except for the short-chain perfluorobutanoic acid, most of the total mass of each of the PFCAs taken up by wheat was found to be at the root. The root concentration factor (RCF) and shoot/root concentration factor (SRCF) were calculated, and with the increase in carbon chain length, the RCFs increased but SRCFs decreased, which indicated that long-chain PFCAs had stronger root uptake and weaker translocation capacities than short-chain PFCAs. In addition, pH could obviously impact the uptake of four PFCAs in the roots and shoots of wheat, and the highest concentrations were found at pH = 7 when the pH increased from 4 to 10.  相似文献   

10.
DNA methylation of cytosine residues, catalyzed by DNA methyltransferases, is suggested to play important roles in regulating gene expression and plant development. In this study, we isolated four wheat cDNA fragments and one cDNA with open reading frame encoding putative DNA methyltransferase and designated TaMET1, TaMET2a, TaMET2b, TaCMT, TaMET3, respectively. BLASTX searches and phylogenetic analysis suggested that five cDNAs belonged to four classes (Dnmt1, Dnmt2, CMT and Dnmt3) of DNA methyltransferase genes. TaMET2a encoded a protein of 376 aa and contained eight of ten conserved motifs characteristic of DNA methyltransferase. Genomic sequence of TaMET2a was obtained and found to contain ten introns and eleven exons. The expression analysis of the five genes revealed that they were expressed in developing seed, during germination and various vegetative tissues, but in quite different abundance. It was interesting to note that TaMET1 and TaMET3 mRNAs were clearly detected in dry seeds. Moreover, the differential expression patterns of five genes were observed between wheat hybrid and its parents in leaf, stem and root of jointing stage, some were up-regulated while some others were down-regulated in the hybrid. We concluded that multiple wheat DNA methyltransferase genes were present and might play important roles in wheat growth and development.  相似文献   

11.
12.
13.
14.
The genetic identity of eight wheat (Triticum aestivum L.) accessions maintained in the Gatersleben genebank and regenerated up to 24 times was studied by using wheat microsatellite markers (WMS). It was demonstrated that WMS can be used to analyze bulks of seeds stored more than 50 years in a seed reference collection at room temperature. No contamination due to foreign pollen or incorrect handling during the multiplication cycles was discovered. For one accession (TRI 4599) genetic drift was observed, whereas for TRI 249 a heterogenous situation for two markers was maintained over the years. We were able to show that microsatellites can be used as a simple and reliable marker system for the verification of the integrity and genetic stability of genebank accessions. Received: 29 March 1999 / Accepted: 22 June 1999  相似文献   

15.
Summary Inheritance of the ability to respond in wheat anther culture was studied from 6×2 reciprocal crosses between six varieties with high and two varieties with low capacity for green plant formation and their parents, replicated in two environments. Effects of genotypes dominated embryo formation and percentages of green plants, accounting for 78.4% and 85.4% of total variation, respectively, while smaller genetic effects were indicated for regeneration. Nuclear genes could explain almost all the genotype effects in this material. Embryo formation showed heterosis over high parent for 5 of the 12 hybrids, while percentages of green plants from the hybrids were intermediate to the parents. General Combining Ability (GCA) could explain 78.8% of the variation for embryo formation among the hybrids, whereas differences in percentage of green plants were dominated by Specific Combining Ability (SCA), accounting for 67.9% of hybrid variation. A positive correlation (r=0.81**) was observed between the genetic capacity for regeneration and green plant formation. Analysis of covariance indicated that effects causing GCA for green plant formation were mainly responsible for this correlation. A regression model with two parallel lines divided the six parent lines with high green plant formation into three groups with respect to their reactions with the two testers. The results are discussed with regard to possible involvement of two sets of nuclear genes affecting the percentage of green plants obtained in wheat anther culture: one set consisting of mainly additive effects affecting green plant percentage through an initial effect on regeneration ability, and another set of two or a few more major genes with dominance or epistatic effects uncorrelated with regeneration.  相似文献   

16.
Silicon absorption by wheat (Triticum aestivum L.)   总被引:3,自引:0,他引:3  
Rafi  Malik M.  Epstein  Emanuel 《Plant and Soil》1999,211(2):223-230
Although silicon (Si) is a quantitatively major inorganic constituent of higher plants the element is not considered generally essential for them. Therefore it is not included in the formulation of any of the solution cultures widely used in plant physiological research. One consequence of this state of affairs is that the absorption and transport of Si have not been investigated nearly as much as those of the elements accorded 'essential' status. In this paper we report experiments showing that Si is rapidly absorbed by wheat (Triticum aestivum L.) plants from solution cultures initially containing Si at 0.5 mM, a concentration realistic in terms of the concentrations of the element in soil solutions. Nearly mature plants (headed out) 'preloaded' with Si absorbed it at virtually the same rate as did plants grown previously in solutions to which Si had not been added. The rate of Si absorption increased by more than an order of magnitude between the 2-leaf and the 7-8 leaf stage, with little change thereafter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The wheat (Triticum aestivum L.) leaf proteome   总被引:1,自引:0,他引:1  
The wheat leaf proteome was mapped and partially characterized to function as a comparative template for future wheat research. In total, 404 proteins were visualized, and 277 of these were selected for analysis based on reproducibility and relative quantity. Using a combination of protein and expressed sequence tag database searching, 142 proteins were putatively identified with an identification success rate of 51%. The identified proteins were grouped according to their functional annotations with the majority (40%) being involved in energy production, primary, or secondary metabolism. Only 8% of the protein identifications lacked ascertainable functional annotation. The 51% ratio of successful identification and the 8% unclear functional annotation rate are major improvements over most previous plant proteomic studies. This clearly indicates the advancement of the plant protein and nucleic acid sequence and annotation data available in the databases, and shows the enhanced feasibility of future wheat leaf proteome research.  相似文献   

18.
Plant regeneration was achieved from coleoptile tissue of wheat (Triticum aestivum L. cv. Kharachia-65). Coleoptiles (1.0 - 3.5 cm long) were excised from 2- to 5-d-old seedlings and cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D - 0.5, 2.5, and 5.0 mg dm-3). Cream, friable callus was obtained after 6 weeks of inoculation. This callus was sub-cultured on MS medium supplemented with 2,4-D (2.5 mg dm-3) and 5 % coconut water. After 6 weeks of sub-culturing white, cream or pale, friable, nodular callus was obtained. Plant regeneration occurred when this callus was sub-cultured on MS medium supplemented with 0.2 mg dm-3 1-naphthalene acetic acid + 1.0 mg dm-3 6-benzylaminopurine. For rooting, regenerated shoots or plantlets were transferred on MS medium supplemented with 0.5 mg dm-3 indole-3-acetic acid. Rooted plantlets were directly transferred into pots and grown under field conditions. Seed setting invariably occurred in all plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
根据已知小麦正源基因TaDEP1 cDNA序列设计引物,成功克隆了小麦TaDEP1基因组序列,发现该基因包含5个外显子,4个内含子.通过比较该基因在六倍体普通小麦A、B、D基因组中的差异,筛选出可以区分A、B、D基因组的分子标记Ta956.以中国春缺体-四体系为材料,利用该标记将TaDEP1基因定位于小麦5A、5B和5...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号