首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.  相似文献   

2.
Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial Alzheimer's disease (FAD), have been causally implicated in the pathogenesis of neuronal cell death through a perturbation of cellular Ca(2+) homeostasis. We have recently shown that, at variance with previous suggestions obtained in cells expressing other FAD-linked PS mutations, PS2-M239I and PS2-T122R cause a reduction and not an increase in cytosolic Ca(2+) rises induced by Ca(2+) release from stores. In this contribution we have used different cell models: human fibroblasts from controls and FAD patients, cell lines (SH-SY5Y, HeLa, HEK293, MEFs) and rat primary neurons expressing a number of PS mutations, e.g. P117L, M146L, L286V, and A246E in PS1 and M239I, T122R, and N141I in PS2. The effects of FAD-linked PS mutations on cytosolic Ca(2+) changes have been monitored either by using fura-2 or recombinant cytosolic aequorin as the probe. Independently of the cell model or the employed probe, the cytosolic Ca(2+) increases, caused by agonist stimulation or full store depletion by drug treatment, were reduced or unchanged in cells expressing the PS mutations. Using aequorins, targeted to the endoplasmic reticulum or the Golgi apparatus, we here show that FAD-linked PS mutants lower the Ca(2+) content of intracellular stores. The phenomenon was most prominent in cells expressing PS2 mutants, and was observed also in cells expressing the non-pathogenic, "loss-of-function" PS2-D366A mutation. Taken as a whole, our findings, while confirming the capability of presenilins to modify Ca(2+) homeostasis, suggest a re-evaluation of the "Ca(2+) overload" hypothesis in AD and a new working hypothesis is presented.  相似文献   

3.
4.
Familial Alzheimer disease (FAD) is linked to mutations in the presenilin (PS) homologs. FAD mutant PS expression has several cellular consequences, including exaggerated intracellular Ca(2+) ([Ca(2+)](i)) signaling due to enhanced agonist sensitivity and increased magnitude of [Ca(2+)](i) signals. The mechanisms underlying these phenomena remain controversial. It has been proposed that PSs are constitutively active, passive endoplasmic reticulum (ER) Ca(2+) leak channels and that FAD PS mutations disrupt this function resulting in ER store overfilling that increases the driving force for release upon ER Ca(2+) release channel opening. To investigate this hypothesis, we employed multiple Ca(2+) imaging protocols and indicators to directly measure ER Ca(2+) dynamics in several cell systems. However, we did not observe consistent evidence that PSs act as ER Ca(2+) leak channels. Nevertheless, we confirmed observations made using indirect measurements employed in previous reports that proposed this hypothesis. Specifically, cells lacking PS or expressing a FAD-linked PS mutation displayed increased area under the ionomycin-induced [Ca(2+)](i) versus time curve (AI) compared with cells expressing WT PS. However, an ER-targeted Ca(2+) indicator revealed that this did not reflect overloaded ER stores. Monensin pretreatment selectively attenuated the AI in cells lacking PS or expressing a FAD PS allele. These findings contradict the hypothesis that PSs form ER Ca(2+) leak channels and highlight the need to use ER-targeted Ca(2+) indicators when studying ER Ca(2+) dynamics.  相似文献   

5.
Missense mutations in presenilin 1 (PS1) and presenilin 2 (PS2) proteins are a major cause of familial Alzheimer disease. Presenilins are proteins with nine transmembrane (TM) domains that function as catalytic subunits of the γ-secretase complex responsible for the cleavage of the amyloid precursor protein and other type I transmembrane proteins. The water-filled cavity within presenilin is necessary to mediate the intramembrane proteolysis reaction. Consistent with this idea, cysteine-scanning mutagenesis and NMR studies revealed a number of water-accessible residues within TM7 and TM9 of mouse PS1. In addition to γ-secretase function, presenilins also demonstrate a low conductance endoplasmic reticulum Ca(2+) leak function, and many familial Alzheimer disease presenilin mutations impair this function. To map the potential Ca(2+) conductance pore in PS1, we systematically evaluated endoplasmic reticulum Ca(2+) leak activity supported by a series of cysteine point mutants in TM6, TM7, and TM9 of mouse PS1. The results indicate that TM7 and TM9, but not TM6, could play an important role in forming the conductance pore of PS1. These results are consistent with previous cysteine-scanning mutagenesis and NMR analyses of PS1 and provide further support for our hypothesis that the hydrophilic catalytic cavity of presenilins may also constitute a Ca(2+) conductance pore.  相似文献   

6.
Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling, we studied the effect of two other FAD PS1 mutants (M146V and L250S) and two dominant negative PS1 mutants (D257A and D385N) on basal and carbachol-stimulated phosphoinositide (PI) hydrolysis and intracellular calcium concentrations ([Ca2+]i) in SH-SY5Y neuroblastoma cells. We found a significant increase in basal PI hydrolysis in PS1 M146V cells but not in PS1 L250S cells. Both PS1 M146V and PS1 L250S cells showed a significant increase in carbachol-induced [Ca2+]i as compared with nontransfected or wild type PS1 transfected cells. The elevated carbachol-induced [Ca2+]i signals were reversed by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated carbachol-stimulated PI hydrolysis and [Ca2+]i responses. In nontransfected or PS1 wild type transfected cells, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester and pepstatin A also attenuated both carbachol-stimulated PI hydrolysis and [Ca2+]i responses to levels found in PS1 D257A or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent.  相似文献   

7.
Presenilins (PS) are proteins involved in the pathogenesis of autosomal-dominant familial cases of Alzheimer's disease. Mutations in PS are known to induce specific alterations in cellular Ca2+ signaling which might be involved in the pathogenesis of neurodegenerative diseases. Mouse embryonic fibroblasts (MEF) deficient in PS1 and PS2 (PS DKO) as well as the latter rescued with PS1 (Rescue), were used to investigate the underlying mechanism of these alterations in Ca2+ signaling. PS DKO cells were characterized by a decrease in the [Ca2+]ER as measured by ER-targeted aequorin luminescence and an increased level of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). The lower [Ca2+]ER was associated with an increase in a Ca2+ leak from the ER. The increased IP3R1 expression and the concomitant changes in ER Ca2+ handling were reversed in the Rescue cells. Moreover using RNA-interference mediated reduction of IP3R1 we could demonstrate that the up-regulation of this isoform was responsible for the increased Ca2+ leak and the lowered [Ca2+]ER PS DKO cells. Finally, we show that the decreased [Ca2+]ER in PS DKO cells was protective against apoptosis.  相似文献   

8.
BACKGROUND: Mutations in the presenilin proteins cause early-onset, familial Alzheimer's disease (FAD). MATERIALS AND METHODS: We characterized the cellular localization and endoproteolysis of presenilin 2 (PS2) and presenilin 1 (PS1) in brains from 25 individuals with presenilin-mutations causing FAD, as well as neurologically normal individuals and individuals with sporadic Alzheimer's disease (AD). RESULTS: Amino-terminal antibodies to both presenilins predominantly decorated large neurons. Regional differences between the broad distributions of the two presenilins were greatest in the cerebellum, where most Purkinje cells showed high levels of only PS2 immunoreactivity. PS2 endoproteolysis in brain yielded multiple amino-terminal fragments similar in size to the PS1 amino-terminal fragments detected in brain. In addition, two different PS2 amino-terminal antibodies also detected a prominent 42 kDa band that may represent a novel PS2 form in human brain. Similar to PS1 findings, neither amino-terminal nor antiloop PS2 antibodies revealed substantial full-length PS2 in brain. Immunocytochemical examination of brains from individuals with the N141I PS2 mutation or eight different PS1 mutations, spanning the molecule from the second transmembrane domain to the large cytoplasmic loop domain, revealed immunodecoration of no senile plaques and only neurofibrillary tangles in the M139I PS1 mutation stained with PS1 antibodies. CONCLUSIONS: Overall presenilin expression and the relative abundance of full-length and amino-terminal fragments in presenilin FAD cases were similar to control cases and sporadic AD cases. Thus, accumulation of full-length protein or other gross mismetabolism of neither PS2 nor PS1 is a consequence of the FAD mutations examined.  相似文献   

9.
Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain is thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the ‘amyloid hypothesis’ of AD etiology in both the familal (FAD) and sporadic forms of the disease. Genetic mutations causing FAD also result in the dysregulation of neuronal calcium (Ca2+) handling and may contribute to AD pathogenesis, an idea termed the ‘calcium hypothesis’ of AD. Mutations in presenilin proteins account for majority of FAD cases. Presenilins function as catalytic subunit of γ-secretase involved in generation of Aβ peptide Recently, we discovered that presenilns function as low-conductance, passive ER Ca2+ leak channels, independent of γ-secretase activity. We further discovered that many FAD mutations in presenilins result in loss of ER Ca2+ leak function activity and Ca2+ overload in the ER. These results provided potential explanation for abnormal Ca2+ signaling observed in FAD cells with mutations in presenilns. Our latest work on studies of ER Ca2+ leak channel function of presenilins and implications of these findings for understanding AD pathogenesis are discussed in this article.  相似文献   

10.
In addition to disrupting the regulated intramembraneous proteolysis of key substrates, mutations in the presenilins also alter calcium homeostasis, but the mechanism linking presenilins and calcium regulation is unresolved. At rest, cytosolic Ca(2+) is maintained at low levels by pumping Ca(2+) into stores in the endoplasmic reticulum (ER) via the sarco ER Ca(2+)-ATPase (SERCA) pumps. We show that SERCA activity is diminished in fibroblasts lacking both PS1 and PS2 genes, despite elevated SERCA2b steady-state levels, and we show that presenilins and SERCA physically interact. Enhancing presenilin levels in Xenopus laevis oocytes accelerates clearance of cytosolic Ca(2+), whereas higher levels of SERCA2b phenocopy PS1 overexpression, accelerating Ca(2+) clearance and exaggerating inositol 1,4,5-trisphosphate-mediated Ca(2+) liberation. The critical role that SERCA2b plays in the pathogenesis of Alzheimer's disease is underscored by our findings that modulating SERCA activity alters amyloid beta production. Our results point to a physiological role for the presenilins in Ca(2+) signaling via regulation of the SERCA pump.  相似文献   

11.
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.  相似文献   

12.
Presenilins 1 (PS1) and 2 (PS2) are multispanning transmembrane proteins associated with familial Alzheimer disease (FAD). They are developmentally regulated, being expressed at highest levels during neuronal differentiation and are sustained at a lower level throughout life. We investigated the distribution and metabolism of endogenous murine PS1 as well as human wild-type (wtPS1) and the familial AD Met146Leu (M146L) mutant presenilins in dissociated cultures of hippocampal neurons derived from control and transgenic mice. We found that the PS1 endoproteolytic fragments and, to a lesser extent, the full-length protein, were expressed as early as day 3 post-plating. Both species increased until the cells were fully differentiated at day 12. Confocal microscopy revealed that presenilin is present in the Golgi and endoplasmic reticulum and, as in punctate, vesicle-like structures within developing neurites and growth cones. Using a human-specific PS1 antibody, we were able to independently examine the distribution of the transgenic protein which, although similar to the endogenous, showed some unique qualities. These included (i) some heterogeneity in the proteolytic fragments of human PS1; (ii) significantly reduced levels of full-length human PS1, possibly as a result of preferential processing; and (iii) a more discrete intracellular distribution of human PS1. Colocalization with organelle-specific proteins revealed that PS1 was located in a diffuse staining pattern in the MAP2-positive dendrites and in a punctate manner in GAP43-positive axons. PS1 showed considerable overlap with GAP43, particularly at the growth cones. Similar patterns of PS1 distribution were detected in cultures derived from transgenic animals expressing human wild-type or mutant presenilins. The studies demonstrate that mutant presenilins are not grossly different in their processing or distribution within cultured neurons, which may represent more physiological models as compared to transfection systems. Our data also suggest that the molecular pathology associated with PS1 mutations results from subtle alterations in presenilin function, which can be further investigated using these transgenic neuronal cell culture models.  相似文献   

13.
Mutations in the presenilins (PS) account for the majority of familial Alzheimer disease (FAD) cases. To test the hypothesis that oxidative stress can underlie the deleterious effects of presenilin mutations, we analyzed lipid peroxidation products (4-hydroxynonenal (HNE) and malondialdehyde) and antioxidant defenses in brain tissue and levels of reactive oxygen species (ROS) in splenic lymphocytes from transgenic mice bearing human PS1 with the M146L mutation (PS1M146L) compared to those from mice transgenic for wild-type human PS1 (PS1wt) and nontransgenic littermate control mice. In brain tissue, HNE levels were increased only in aged (19-22 months) PS1M146L transgenic animals compared to PS1wt mice and not in young (3-4 months) or middle-aged mice (13-15 months). Similarly, in splenic lymphocytes expressing the transgenic PS1 proteins, mitochondrial and cytosolic ROS levels were elevated to 142.1 and 120.5% relative to controls only in cells from aged PS1M146L animals. Additionally, brain tissue HNE levels were positively correlated with mitochondrial ROS levels in splenic lymphocytes, indicating that oxidative stress can be detected in different tissues of PS1 transgenic mice. Antioxidant defenses (activities of antioxidant enzymes Cu/Zn-SOD, GPx, or GR) or susceptibility to in vitro oxidative stimulation was unaltered. In summary, these results demonstrate that the PS1M146L mutation increases mitochondrial ROS formation and oxidative damage in aged mice. Hence, oxidative stress caused by the combined effects of aging and PS1 mutations may be causative for triggering neurodegenerative events in FAD patients.  相似文献   

14.
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain is thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the ‘amyloid hypothesis’ of AD etiology in both the familal (FAD) and sporadic forms of the disease. Genetic mutations causing FAD also result in the dysregulation of neuronal calcium (Ca2+) handling and may contribute to AD pathogenesis, an idea termed the ‘calcium hypothesis’ of AD. Mutations in presenilin proteins account for the majority of FAD cases. Presenilins function as catalytic subunits of γ-secretase involved in the generation of Aβ peptide. Recently, we discovered that presenilns function as low-conductance, passive ER Ca2+ leak channels, independent of γ-secretase activity. We further discovered that many FAD mutations in presenilins results in the loss of ER Ca2+ leak function activity and Ca2+ overload in the ER. These results provided potential explanation for abnormal Ca2+ signaling observed in FAD cells with mutations in presenilns. The implications of these findings for understanding AD pathogenesis are discussed in this article.  相似文献   

15.
Presenilins (PS1 and PS2) are multifunctional proteins involved in a diverse array of molecular and cellular functions, including proteolysis, development, neurogenesis, synaptic plasticity, ion channel regulation and phospholipid metabolism. Mutations in presenilin genes are responsible for the majority of Familial Alzheimer disease (FAD). Consequently, FAD-associated mutations in genes encoding PS1 or PS2 lead to several key cellular phenotypes, including alterations in proteolysis of β-amyloid precursor protein (APP) and Ca(2+) entry. The mechanism underlying presenilin (PS)-mediated modulation of Ca(2+) entry remains to be determined. Our previous studies showed that the PS-dependent down-regulation of phosphatidylinositol-4,5-bisphosphate (PIP2) is attributable to the observed Ca(2+) deficits. In this study, we attempted to identify the ion channel that is subject to the PIP2 and PS-dependent modulation. We found that Ca(2+) or Zn(2+) entry via the transient receptor potential melastatin 7 (TRPM7) channel was attenuated by the presence of FAD-associated PS1 mutants, such as ΔE9 and L286V. TRPM7 has been implicated in Mg(2+) homeostasis and embryonic development. The intracellular delivery of PIP2 restored TRPM7-mediated Ca(2+) influx, indicating that the observed deficits in Ca(2+) entry are due to downregulation of PIP2. Conversely, PS1 and PS2 deficiency, previously shown to upregulate PIP2 levels, potentiated TRPM7-mediated Ca(2+) influx. PS-dependent changes in Ca(2+) influx could be neutralized by a TRPM7 channel blocker. Collectively, these results indicate that TRPM7 may underlie the Ca(2+) entry deficits observed in FAD-associated PS mutants and suggest that the normal function of PS involves regulation of TRPM7 through a PIP2-dependent mechanism.  相似文献   

16.
Ryanodine receptors (RyRs) amplify intracellular Ca(2+) signals by massively releasing Ca(2+) from intracellular stores. Exaggerated chronic Ca(2+) release can trigger cellular apoptosis underlying a variety of neurodegenerative diseases. Aberrant functioning of presenilin-1 (PS1) protein instigates Ca(2+)-dependent apoptosis, providing a basis for the "calcium hypothesis" of Alzheimer's disease (AD). To get insight into this problem, we hypothesized that the previously reported physical interaction between RyR and PS1 modulates functional properties of the RyR. We generated a soluble cytoplasmic N-terminal fragment of PS1 comprising the first 82 amino acid (PS1 NTF(1-82)), the candidate for interaction with putative cytoplasmic modulatory sites of the RyR, and studied its effect on single channel currents of mouse brain RyRs incorporated in lipid bilayers. PS1 NTF(1-82) strongly increased both mean currents (EC(50)=12nM, Hill coefficient (n(H)) approximately 1) and open probability for higher sublevels for single RyR channels (EC(50)=7nM, n(H) approximately 2). Bell-shaped Ca(2+)-activation curve remained unchanged, suggesting that PS1 NTF(1-82) allosterically potentiates RyRs, but that the channel still requires Ca(2+) for activation. Corroborating such an independent mechanism, the RyR potentiation by PS1 NTF(1-82) was overridden by receptor desensitization at high [Ca(2+)] (pCa>5). This potentiation of RyR by PS1 NTF(1-82) reveals a new mechanism of physiologically relevant PS1-regulated Ca(2+) release from intracellular stores, which could be alternative or additional to recently reported intracellular Ca(2+) leak channels formed by PS1 holoproteins.  相似文献   

17.
Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.  相似文献   

18.
Mutations in the two presenilin genes (PS1, PS2) account for the majority of early-onset familial Alzheimer's disease (FAD) cases. Converging evidence from a variety of experimental systems, including fibroblasts from FAD patients and transgenic animals, indicates that PS1 mutations modulate intracellular calcium signaling pathways. Despite the potential relevance of these changes to the pathogenesis of FAD, a comparable effect for PS2 has not yet been demonstrated experimentally. We examined the effects of wild-type PS2, and both of the identified FAD mutations in PS2, on intracellular calcium signaling in Xenopus oocytes. Inositol 1,4, 5-trisphosphate (IP(3))-evoked calcium signals were significantly potentiated in cells expressing either of the PS2 mutations relative to wild-type PS2-expressing cells and controls. Decay rates of calcium signals were also significantly accelerated in mutant PS2-expressing cells in a manner dependent upon IP(3) concentration. The finding that mutations in both PS1 and PS2 modulate intracellular calcium signaling suggests that these disturbances may represent a common pathogenic mechanism of presenilin-associated FAD.  相似文献   

19.
Perturbations in intracellular Ca2+ signaling may represent one mechanism underlying Alzheimer's disease (AD). The presenilin-1 gene (PS1), associated with the majority of early onset familial AD cases, has been implicated in this signaling pathway. Here we used the Xenopus oocyte expression system to investigate in greater detail the role of PS1 in intracellular Ca2+ signaling pathways. Treatment of cells expressing wild-type PS1 with a cell surface receptor agonist to stimulate the phosphoinositide second messenger pathway evoked Ca2+-activated Cl- currents that were significantly potentiated relative to controls. To determine which elements of the signal transduction pathway are responsible for the potentiation, we used photolysis of caged inositol 1,4,5-trisphosphate (IP3) and fluorescent Ca2+ imaging to demonstrate that PS1 potentiates IP3-mediated release of Ca2+ from internal stores. We show that an AD-linked mutation produces a potentiation in Ca2+ signaling that is significantly greater than that observed for wild-type PS1 and that cannot be attributed to differences in protein expression levels. Our findings support a role for PS1 in modulating IP3-mediated Ca2+ liberation and suggest that one pathophysiological mechanism by which PS1 mutations contribute to AD neurodegeneration may involve perturbations of this function.  相似文献   

20.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to neuron death and synapse loss in the hippocampus and cortex, with consequent cognitive disability and dementia. Mutations in the presenilin-1 (PS1) gene lead to familial Alzheimer's disease (FAD). Here, we report that the expression of FAD-linked PS1 M146V mutant affects store-operated calcium channel activity (Isoc) in human neuroblastoma SK–N–SH cells. Electrophysiological measurements and calcium imaging experiments have revealed the emergent role of calcium sensor STIM2 in the inhibition of calcium release-activated calcium channel activity (Icrac) and enhancement of intracellular Ca2+ stores content due to PS1 M146V mutant expression. In general, the results of this study suggest that the pathological inhibition of one type of store-operated calcium channels caused by FAD PS1 mutant expression may be accounted for by preceding gain of spontaneous activity of store-operated calcium channels driven by STIM2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号