首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inflammatory agent that has a similar diphenyl motif in its structure. In this study, we found that diclofenac modifies Na+ channel gating in a way similar to the foregoing anticonvulsants. The dissociation constants of diclofenac binding to the resting, activated, and inactivated Na+ channels are approximately 880 microM, approximately 88 microM, and approximately 7 microM, respectively. The changing affinity well depicts the gradual shaping of a use-dependent receptor along the gating process. Most interestingly, diclofenac does not show the pore-blocking effect of carbamazepine on the Na+ channel when the external solution contains 150 mM Na+, but is turned into an effective Na+ channel pore blocker if the extracellular solution contains no Na+. In contrast, internal Na+ has only negligible effect on the functional consequences of diclofenac binding. Diclofenac thus acts as an "opportunistic" pore blocker modulated by external but not internal Na+, indicating that the diclofenac binding site is located at the junction of a widened part and an acutely narrowed part of the ion conduction pathway, and faces the extracellular rather than the intracellular solution. The diclofenac binding site thus is most likely located at the external pore mouth, and undergoes delicate conformational changes modulated by external Na+ along the gating process of the Na+ channel.  相似文献   

2.
The anticonvulsant effect of felbamate (FBM) is ascribable to inhibition of N-methyl-d-aspartate (NMDA) currents. Using electrophysiological studies in rat hippocampal neurons to examine the kinetics of FBM binding to and unbinding from the NMDA channel, we show that FBM modifies NMDA channel gating via a one-to-one binding stoichiometry and has quantitatively the same enhancement effect on NMDA and glycine binding to the NMDA channel. Moreover, the binding rates of FBM to the closed and the open/desensitized NMDA channels are 187.5 and 4.6 x 10(4) M(-1) s(-1), respectively. The unbinding rates of FBM from the closed and the open/desensitized NMDA channels are approximately 6.2 x 10(-2) and approximately 3.1 s(-1), respectively. From the binding and unbinding rate constants, apparent dissociation constants of approximately 300 and approximately 70 microM could be calculated for FBM binding to the closed and the open/desensitized NMDA channels, respectively. The slight (approximately fourfold) difference in FBM binding affinity to the closed and to the open/desensitized NMDA channels thus is composed of much larger differences in the binding and unbinding kinetics (approximately 250- and approximately 60-fold difference, respectively). These findings suggest that the effects of NMDA and glycine binding coalesce or are interrelated before or at the actual activation gate, and FBM binding seems to modulate NMDA channel gating at or after this coalescing point. Moreover, the entrance zone of the FBM binding site very likely undergoes a much larger conformational change along the gating process than that in the binding region(s) of the binding site. In other words, the FBM binding site becomes much more accessible to FBM with NMDA channel activation, although the spatial configurations of the binding ligand(s) for FBM themselves are not altered so much along the gating process.  相似文献   

3.
C C Kuo 《Biophysical journal》1998,75(6):2845-2857
Rapidly inactivating K+ current (KA current) is recorded from rat hippocampal neurons by whole-cell patch-clamp technique and suitable voltage protocols. It is found that imipramine, a commonly prescribed tricyclic antidepressant, is an open KA channel blocker with a binding rate constant of 5.6 x 10(6) M-1 s-1 and an apparent dissociation constant of no more than 6 microM if applied extracellularly in pH 7.4. The inhibitory effect is more pronounced in more alkaline extracellular solution, suggesting that the neutral form of imipramine is much more active than the charged form. In contrast, intracellular imipramine shows no inhibitory effect. Furthermore, the inhibitory effect of imipramine is antagonized by external but not internal K+. These findings suggest an imipramine binding site located close to the external pore mouth. It is also found that the inactivation curve of KA current is not changed by imipramine. Moreover, the recovery of KA current after a step depolarization is accelerated in the presence of imipramine. These findings suggest insignificant binding of imipramine to the fast inactivated KA channel. The selective binding of imipramine to only the activated but not the deactivated or inactivated states seems to suggest continual gating conformational changes in the external pore mouth of these neuronal KA channels during membrane depolarization.  相似文献   

4.
NMDA receptors are glutamate-regulated ion channels that are of great importance for many physiological and pathophysiological conditions in the mammalian central nervous system. We have previously shown that, at low pH, glutamate decreases binding of the open-channel blocker [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten, 5,10-imine ([3H]MK-801) to NMDA receptors in the presence of 1 mM Mg2+ but not in Krebs buffer. Here, we investigated which cations that block the glutamate-induced decrease in Krebs buffer, using [3H]MK-801 binding assays in membrane preparations from the rat cerebral cortex. At pH 6.0, Na+, K+, and Ca2+ antagonized the glutamate-induced decrease with cross-over values, which is a measure of the antagonist potencies of the cations, of 81, 71, and 26 mM, respectively, in the absence of added glycine. Thus, in Krebs buffer only the concentration of Na+ (126 mM) is sufficiently high to block the glutamate-induced decrease observed at low pH. In the presence of 1 mM Mg2+ and 10 mM Ca2+ at pH 7.4, the cross-over values for Na+, K+, and Ca2+ were 264, 139, and 122 mM, respectively, in the absence of added glycine. This is the same rank order of potency as observed at pH 6.0, suggesting that the less H+-sensitive and the less Ca2+-sensitive, glutamate-induced decreases in [3H]MK-801 binding represent the same entity. The glycine site antagonists 7-chlorokynurenate (10 microM) and 7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(H)-quinoline (L-701,324; 1 microM) antagonized the glutamate-induced decrease in [3H]MK-801 binding observed in presence of Mg2+ at pH 6.0, suggesting that glycine is required together with glutamate to induce the decrease observed at low pH. These results suggest that in addition to a previously described high-affinity binding site for H+ and Ca2+ there exist a low-affinity binding site for H+, Ca2+, Na+, and K+ on NMDA receptors. The latter site may under physiological conditions be blocked by Na+ or K+, depending on the extra/intracellular localization of the modulatory site. Both the high-affinity and low-affinity cation sites mediate antagonistic effects on the glutamate- and glycine-induced decrease of the affinity of the [3H]MK-801 binding site, which may correspond to similar changes in the affinity of the voltage-sensitive Mg2+-block site inside the NMDA receptor channel pore, which in turn may affect current and Ca2+ influx through activated NMDA receptor channels.  相似文献   

5.
G Akk  A Auerbach 《Biophysical journal》1996,70(6):2652-2658
The properties of adult mouse recombinant nicotinic acetylcholine receptors activated by acetylcholine (ACh+) or tetramethylammonium (TMA+) were examined at the single-channel level. The midpoint of the dose-response curve depended on the type of monovalent cation present in the extracellular solution. The shifts in the midpoint were apparent with both inward and outward currents, suggesting that the salient interaction is with the extracellular domain of the receptor. Kinetic modeling was used to estimate the rate constants for agonist binding and channel gating in both wild-type and mutant receptors exposed to Na+, K+, or Cs+. The results indicate that in adult receptors, the two binding sites have the same equilibrium dissociation constant for agonists. The agonist association rate constant was influenced by the ionic composition of the extracellular solution whereas the rate constants for agonist dissociation, channel opening, and channel closing were not. In low-ionic-strength solutions the apparent association rate constant increased in a manner that suggests that inorganic cations are competitive inhibitors of ACh+ binding. There was no evidence of an electrostatic potential at the transmitter binding site. The equilibrium dissociation constants for inorganic ions (Na+, 151 mM; K+, 92 mM; Cs+, 38 mM) and agonists (TMA+, 0.5 mM) indicate that the transmitter binding site is hydrophobic. Under physiological conditions, about half of the binding sites in resting receptors are occupied by Na+.  相似文献   

6.
The effects of divalent cations on the gating of the cGMP-activated channel, and the effects of gating on the movement of divalent cations in and out of the channel's pore were studied by recording macroscopic currents in excised membrane patches from salamander retinal rods. The fractional block of cGMP-activated Na+ currents by internal and external Mg2+ as well as internal Ca2+ was nearly independent of cGMP concentration. This indicates that Mg2+ and Ca2+ bind with similar affinity to open and closed states of the channel. In contrast, the efficiency of block by internal Cd2+ or Zn2+ increased in proportion to the fraction of open channels, indicating that these ions preferentially occupy open channels. The kinetics of block by internal Ni2+, which competes with Mg2+ but blocks more slowly, were found to be unaffected by the fraction of channels open. External Ni2+, however, blocked and unblocked much more rapidly when channels were mostly open. This suggests that within the pore a gate is located between the binding site(s) for ions and the extracellular mouth of the channel. Micromolar concentrations of the transition metal divalent cations Ni2+, Cd2+, Zn2+, and Mn2+ applied to the cytoplasmic surface of a patch potentiated the response to subsaturating concentrations of cGMP without affecting the maximum current induced by saturating cGMP. The concentration of cGMP that opened half the channels was often lowered by a factor of three or more. Potentiation persisted after the experimental chamber was washed with divalent-free solution and fresh cGMP was applied, indicating that it does not result from an interaction between divalent cations and cGMP in solution; 1 mM EDTA or isotonic MgCl2 reversed potentiation. Voltage-jump experiments suggest that potentiation results from an increase in the rate of cGMP binding. Lowering the ionic strength of the bathing solution enhanced potentiation, suggesting that it involves electrostatic interactions. The strong electrostatic effect on cGMP binding and absence of effect on ion permeation through open channels implies that the cGMP binding sites on the channel are well separated from the permeation pathway.  相似文献   

7.
The effects of external protons on single sodium channel currents recorded from cell-attached patches on guinea pig ventricular myocytes were investigated. Extracellular protons reduce single channel current amplitude in a dose-dependent manner, consistent with a simple rapid channel block model where protons bind to a site within the channel with an apparent pKH of 5.10. The reduction in single channel current amplitude by protons is voltage independent between -70 and -20 mV. Increasing external proton concentration also shifts channel gating parameters to more positive voltages, consistent with previous macroscopic results. Similar voltage shifts are seen in the steady-state inactivation (h infinity) curve, the time constant for macroscopic current inactivation (tau h), and the first latency function describing channel activation. As pHo decreases from 7.4 to 5.5 the midpoint of the h infinity curve shifts from -107.6 +/- 2.6 mV (mean +/- SD, n = 16) to -94.3 +/- 1.9 mV (n = 3, P less than 0.001). These effects on channel gating are consistent with a reduction in negative surface potential due to titration of negative external surface charge. The Gouy-Chapman-Stern surface charge model incorporating specific proton binding provides an excellent fit to the dose-response curve for the shift in the midpoint of the h infinity curve with protons, yielding an estimate for total negative surface charge density of -1e/490 A2 and a pKH for proton binding of 5.16. By reducing external surface Na+ concentration, titration of negative surface charge can also quantitatively account for the reduction in single Na+ channel current amplitude, although we cannot rule out a potential role for channel block. Thus, titration by protons of a single class of negatively charged sites may account for effects on both single channel current amplitude and gating.  相似文献   

8.
9.
Batrachotoxin-activated rat brain Na+ channels were reconstituted in neutral planar phospholipid bilayers in high ionic strength solutions (3 M NaCl). Under these conditions, diffuse surface charges present on the channel protein are screened. Nevertheless, the addition of extracellular and/or intracellular Ba2+ caused the following alterations in the gating of Na+ channels: (a) external (or internal) Ba2+ caused a depolarizing (or hyperpolarizing) voltage shift in the gating curve (open probability versus membrane potential curve) of the channels; (b) In the concentration range of 10-120 mM, extracellular Ba2+ caused a larger voltage shift in the gating curve of Na+ channels than intracellular Ba2+; (c) voltage shifts of the gating curve of Na+ channels as a function of external or internal Ba2+ were fitted with a simple binding isotherm with the following parameters: for internal Ba2+, delta V0.5,max (maximum voltage shift) = -11.5 mV, KD = 64.7 mM; for external Ba2+, delta V0.5,max = 13.5 mV, KD = 25.8 mM; (d) the change in the open probability of the channel caused by extracellular or intracellular Ba2+ is a consequence of alterations in both the opening and closing rate constants. Extracellular and intracellular divalent cations can modify the gating kinetics of Na+ channels by a specific modulatory effect that is independent of diffuse surface potentials. External or internal divalent cations probably bind to specific charges on the Na+ channel glycoprotein that modulate channel gating.  相似文献   

10.
Liu Y  Hill RH  Arhem P  von Euler G 《Life sciences》2001,68(16):1817-1826
NMDA receptors are glutamate-regulated ion channels of critical importance for many neurophysiological and neuropathological processes. Mg2+ blocks the NMDA receptor by binding to the channel pore with an apparent affinity that depends on the membrane potential. We have investigated the effect of NMDA and the required co-agonist glycine on the affinity of the Mg2+ block site in NR1-1a/NR2A NMDA receptors expressed in Xenopus oocytes. We found that NMDA and glycine increase the IC50 value of the Mg2+-block site at pH 7.4 and in the presence of physiological concentration of Ca2+. The increase the IC50 value may correspond to a decrease in Mg2+-block affinity. This effect may result in an increased influx of Ca2+, and this influx may constitute up to a third of the total Ca2+ influx induced by NMDA. At high pH, or at low concentrations of Ca2+, NMDA and glycine have an opposite effect and instead decreased the IC50 value of the Mg2+-block. These results indicate that glutamate and glycine can regulate the affinity of the Mg2+-block site. This effect may have implications for the understanding the role of NMDA receptors both under physiological and pathophysiological conditions.  相似文献   

11.
The effect of low pH on the kinetics of Na channel ionic and gating currents was studied in frog skeletal muscle fibers. Lowering external pH from 7.4 to 5.0 slows the time course of Na current consistent with about a +25-mV shift in the voltage dependence of activation and inactivation time constants. Similar shifts in voltage dependence adequately describe the effects of low pH on the tail current time constant (+23.3 mV) and the gating charge vs. voltage relationship (+22.1 mV). A significantly smaller shift of +13.3 mV described the effect of pH 5.0 solution on the voltage dependence of steady state inactivation. Changes in the time course of gating current at low pH were complex and could not be described as a shift in voltage dependence. tau g, the time constant that describes the time course of the major component of gating charge movement, was slowed in pH 5.0 solution by a factor of approximately 3.5 for potentials from -60 to +45 mV. We conclude that the effects of low pH on Na channel gating cannot be attributed simply to a change in surface potential. Therefore, although it may be appropriate to describe the effect of low pH on some Na channel kinetic properties as a "shift" in voltage dependence, it is not appropriate to interpret such shifts as a measure of changes in surface potential. The maximum gating charge elicited from a holding potential of -150 mV was little affected by low pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of Ca2+, Cd2+, Ba2+, Mg2+ and pH on the renal epithelial Na(+)-channel was investigated by measuring the amiloride-sensitive 22Na+ fluxes into luminal membrane vesicles from pars recta of rabbit proximal tubule. It was found that intravesicular Ca2+ as well as extravesicular Ca2+ substantially lowered the channel-mediated flux. Amiloride sensitive Na+ uptake was nearly completely blocked by 10 microM Ca2+ at pH 7.4. The inhibitory effect of Ca2+ was dependent on pH. Thus, 10 microM Ca2+ produced 90% inhibition of 22Na+ uptake at pH 7.4, and only 40% inhibition at pH 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over the range from 7.0 to 7.4. All the cations Ca2+, Cd2+, Ba2+ except Mg2+ inhibited the 22Na+ influx drastically when added extravesicularly in millimolar concentrations. The cations Cd2+, Ba2+ and Mg2+ in the same concentrations intravesicularly inhibited the 22Na+ influx only slightly. A millimolar concentration of Ca2+ intravesicularly blocked the amiloride-sensitive 22Na+ flux completely. The data indicate that Ca2+ inhibits Na+ influx specifically by binding to sites composed of one or several deprotonated groups on the channel proteins.  相似文献   

13.
The Cl(-)/H(+) exchange mediated by ClC transporters can be uncoupled by external SCN(-) and mutations of the proton glutamate, a conserved residue at the internal side of the protein. We show here for the mammalian ClC transporter ClC-5 that acidic internal pH led to a greater increase in currents upon exchanging extracellular Cl(-) for SCN(-). However, transport uncoupling, unitary current amplitudes, and the voltage dependence of the depolarization-induced activation were not altered by low pH values. Therefore, it is likely that an additional gating process regulates ClC-5 transport. Higher internal [H(+)] and the proton glutamate mutant E268H altered the ratio between ClC-5 transport and nonlinear capacitance, indicating that the gating charge movements in ClC-5 arise from incomplete transport cycles and that internal protons increase the transport probability of ClC-5. This was substantiated by site-directed sulfhydryl modification of the proton glutamate mutant E268C. The mutation exhibited small transport currents together with prominent gating charge movements. The charge restoration using a negatively charged sulfhydryl reagent reinstated also the WT phenotype. Neutralization of the charge of the gating glutamate 211 by the E211C mutation abolished the effect of internal protons, showing that the increased transport probability of ClC-5 results from protonation of this residue. S168P (a mutation that decreases the anion affinity of the central binding site) reduced also the internal pH dependence of ClC-5. These results support the idea that protonation of the gating glutamate 211 at the central anion-binding site of ClC-5 is mediated by the proton glutamate 268.  相似文献   

14.
We have isolated from rat cerebral cortex an endogenous Na(+), K(+)-ATPase inhibitor, termed endobain E, which modulates glutamatergic N-methyl-d-aspartate (NMDA) receptor. This endogenous factor allosterically decreases [(3)H]dizocilpine binding to NMDA receptor, most likely acting as a weak channel blocker. In the present study we investigated whether endobain E is present in the cerebral cortex of rats subjected to ischemia and modulates NMDA receptor exposed to the same conditions. Ischemia-reperfusion was carried out by bilateral occlusion of common carotid arteries followed by a 15-min reperfusion period. Elution profile of brain soluble fraction showed that endobain E is present in cerebral cortex of ischemia-reperfusion rats. On assaying its effect on synaptosomal membrane Na(+), K(+)-ATPase activity and [(3)H]dizocilpine binding to cerebral cortex membranes prepared from animals without treatment, it was found that the endogenous modulator isolated from ischemia-reperfusion rats was able to inhibit both enzyme activity and ligand binding. On the other hand, endobain E prepared from rats without treatment also decreased binding to cerebral cortex or hippocampal membranes obtained from animals exposed to ischemia-reperfusion. Since ischemia decreases tissue pH and NMDA receptor activity varies according to proton concentration, pH influence on endobain E effect was tested. Endobain E ( approximately 80 mg original tissue) decreased [(3)H]dizocilpine binding 25% at pH 7.4 or 8.0 but 90% at pH 6.5. These results demonstrate that endobain E is present and also able to modulate NMDA receptor in the short-term period that follows cerebral ischemia and that its effect depends on proton concentration, suggesting greater NMDA receptor modulation by endobain E at low pH, typical of ischemic tissues.  相似文献   

15.
W Zhou  S W Jones 《Biophysical journal》1996,70(3):1326-1334
We have investigated the effects of external pH (pHo) on whole-cell calcium channel currents in bullfrog sympathetic neurons. The peak inward current increased at alkaline pHo and decreased at acidic pHo. We used tail currents to distinguish effects of pHo on channel gating and permeation. There were large shifts in the voltage dependence of channel activation (approximately 40 mV between pHo and 9.0 and pHo 5.6), which could be explained by binding of H+ to surface charge according to Gouy-Chapman theory. To examine the effects of pHo on permeation, we measured tail currents at 0 mV, following steps to + 120 mV to maximally activate the channels. Unlike most previous studies, we found only a approximately 10% reduction in channel conductance from pHo 9.0 to pHo 6.4, despite a approximately 25 mV shift of channel activation. At lower pHo the channel conductance did decrease, which could be described by binding of H+ to a site with pKa = 5.1. In some cells, there was a separate slow decrease in conductance at low pHo, possibly because of changes in internal pH. These results suggest that changes in current at pHo > 6.4 result primarily from a shift in the voltage dependence of channel activation. A H(+)-binding site can explain a rapid decrease in channel conductance at lower pHo. The surface charge affecting gating has little effect on the local ion concentration near the pore, or on the channel conductance.  相似文献   

16.
Ionic currents through sodium channels in nodal membranes were measured under voltage clamp conditions both at normal and at low (4.8-4.9) external solution pH. The measurements of so-called 'instantaneous' currents were used to distinguish between the proton blockage in open channels and the influence of low pH on channel gating processes. It is shown that the amount of the proton blockage in open channels decreases as membrane potential becomes more positive. This result suggests that at least one of the acid groups accessible from the outside is located within the conducting pore. The influence of the other group(s) on the degree of potential-dependence of proton blockage is discussed.  相似文献   

17.
Ionic currents through sodium channels in nodal membranes were measured under voltage clamp conditions both at normal and at low (4.8–4.9) external solution pH. The measurements of so-called ‘instantaneous’ currents were used to distinguish between the proton blockage in open channels and the influence of low pH on channel gating processes. It is shown that the amount of the proton blockage in open channels decreases as membrane potential becomes more positive. This result suggests that at least one of the acid groups accessible from the outside is located within the conducting pore. The influence of the other group(s) on the degree of potential-dependence of proton blockage is discussed.  相似文献   

18.
The inactivation gating of hERG channels is important for the channel function and drug-channel interaction. Whereas hERG channels are highly selective for K+, we have found that inactivated hERG channels allow Na+ to permeate in the absence of K+. This provides a new way to directly monitor and investigate hERG inactivation. By using whole cell patch clamp method with an internal solution containing 135 mM Na+ and an external solution containing 135 mM NMG+, we recorded a robust Na+ current through hERG channels expressed in HEK 293 cells. Kinetic analyses of the hERG Na+ and K+ currents indicate that the channel experiences at least two states during the inactivation process, an initial fast, less stable state followed by a slow, more stable state. The Na+ current reflects Na+ ions permeating through the fast inactivated state but not through the slow inactivated state or open state. Thus the hERG Na+ current displayed a slow inactivation as the channels travel from the less stable, fast inactivated state into the more stable, slow inactivated state. Removal of fast inactivation by the S631A mutation abolished the Na+ current. Moreover, acceleration of fast inactivation by mutations T623A, F627Y, and S641A did not affect the hERG Na+ current, but greatly diminished the hERG K+ current. We also found that external Na+ potently blocked the hERG outward Na+ current with an IC50 of 3.5 mM. Mutations in the channel pore and S6 regions, such as S624A, F627Y, and S641A, abolished the inhibitory effects of external Na+ on the hERG Na+ current. Na+ permeation and blockade of hERG channels provide novel ways to extend our understanding of the hERG gating mechanisms.  相似文献   

19.
The acid-sensitive ion channels (ASICs) are a family of voltage-insensitive sodium channels activated by external protons. A previous study proposed that the mechanism underlying activation of ASIC consists of the removal of a Ca2+ ion from the channel pore (Immke and McCleskey, 2003). In this work we have revisited this issue by examining single channel recordings of ASIC1 from toadfish (fASIC1). We demonstrate that increases in the concentration of external protons or decreases in the concentration of external Ca2+ activate fASIC1 by progressively opening more channels and by increasing the rate of channel opening. Both maneuvers produced similar effects in channel kinetics, consistent with the former notion that protons displace a Ca2+ ion from a high-affinity binding site. However, we did not observe any of the predictions expected from the release of an open-channel blocker: decrease in the amplitude of the unitary currents, shortening of the mean open time, or a constant delay for the first opening when the concentration of external Ca2+ was decreased. Together, the results favor changes in allosteric conformations rather than unblocking of the pore as the mechanism gating fASIC1. At high concentrations, Ca2+ has an additional effect that consists of voltage-dependent decrease in the amplitude of unitary currents (EC50 of 10 mM at -60 mV and pH 6.0). This phenomenon is consistent with voltage-dependent block of the pore but it occurs at concentrations much higher than those required for gating.  相似文献   

20.
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号