首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of vertebrate cdc2-related kinases has been identified, and these kinases are candidates for roles in cell cycle regulation. Here, we show that the human PLSTIRE gene product is a novel cyclin-dependent kinase, cdk6. The cdk6 kinase is associated with cyclins D1, D2, and D3 in lysates of human cells and is activated by coexpression with D-type cyclins in Sf9 insect cells. Furthermore, we demonstrate that endogenous cdk6 from human cell extracts is an active kinase which can phosphorylate pRB, the product of the retinoblastoma tumor suppressor gene. The activation of cdk6 kinase occurs during mid-G1 in phytohemagglutinin-stimulated T cells, well prior to the activation of cdk2 kinase. This timing suggests that cdk6, and by analogy its homolog cdk4, links growth factor stimulation with the onset of cell cycle progression.  相似文献   

2.
3.
Recent evidence suggested a role for the cell cycle dependent kinases cdc2 and cdk2 in apoptosis. An important mechanism by which many cell types could undergo apoptosis is through the activation of the Fas molecule on the cell membrane. To investigate whether Fas-induced cell death activated cdc2 and cdk2 kinases inappropriately, the human T lymphoma cells HUT-78, which express a high copy number of Fas, and two other previously characterized subclones of the same cell line which express mutant, cell death-deficient dominant-negative forms of Fas, were Fas-challenged and the changes in cdc2 and cdk2 kinase activity monitored. In both wild-type and Fas-mutated HUT-78 cells, apoptosis was associated simultaneously with decreased cdc2 and increased cdk2 activity. This association suggested that changes in cdc2 and cdk2 kinase activity are secondary events in cell death mediated by Fas. J. Cell. Biochem. 64:579–585. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The assembly of functional holoenzymes composed of regulatory D-type cyclins and cyclin-dependent kinases (cdks) is rate limiting for progression through the G1 phase of the mammalian somatic cell cycle. Complexes between D-type cyclins and their major catalytic subunit, cdk4, are catalytically inactive until cyclin-bound cdk4 undergoes phosphorylation on a single threonyl residue (Thr-172). This step is catalyzed by a cdk-activating kinase (CAK) functionally analogous to the enzyme which phosphorylates cdc2 and cdk2 at Thr-161/160. Here, we demonstrate that the catalytic subunit of mouse cdc2/cdk2 CAK (a 39-kDa protein designated p39MO15) can assemble with a regulatory protein present in either insect or mammalian cells to generate a CAK activity capable of phosphorylating and enzymatically activating both cdk2 and cdk4 in complexes with their respective cyclin partners. A newly identified 37-kDa cyclin-like protein (cyclin H [R. P. Fisher and D. O. Morgan, Cell 78:713-724, 1994]) can assemble with p39MO15 to activate both cyclin A-cdk2 and cyclin D-cdk4 in vitro, implying that CAK is structurally reminiscent of cyclin-cdk complexes themselves. Antisera produced to the p39MO15 subunit can completely deplete mammalian cell lysates of CAK activity for both cyclin A-cdk2 and cyclin D-cdk4, with recovery of activity in the resulting immune complexes. By using an immune complex CAK assay, CAK activity for cyclin A-cdk2 and cyclin D-cdk4 was detected both in quiescent cells and invariantly throughout the cell cycle. Therefore, although it is essential for the enzymatic activation of cyclin-cdk complexes, CAK appears to be neither rate limiting for the emergence of cells from quiescence nor subject to upstream regulatory control by stimulatory mitogens.  相似文献   

5.
A family of human cdc2-related protein kinases.   总被引:44,自引:5,他引:39       下载免费PDF全文
The p34cdc2 protein kinase is known to regulate important transitions in the eukaryotic cell cycle. We have identified 10 human protein kinases based on their structural relation to p34cdc2. Seven of these kinases are novel and the products of five share greater than 50% amino acid sequence identity with p34cdc2. The seven novel genes are broadly expressed in human cell lines and tissues with each displaying some cell type or tissue specificity. The cdk3 gene, like cdc2 and cdk2, can complement cdc28 mutants of Saccharomyces cerevisiae, suggesting that all three of these protein kinases can play roles in the regulation of the mammalian cell cycle. The identification of a large family of cdc2-related kinases opens the possibility of combinatorial regulation of the cell cycle together with the emerging large family of cyclins.  相似文献   

6.
The involvement of cdc2 and cdk2 during neuronal differentiation in rat pheochromocytoma PC12 cells was examined. When PC12 cells were cultured with nerve growth factor (NGF), expression of cdc2 decreased significantly after day 5, while expression of cdk2 decreased gradually after day 7. Cells overexpressing cdc2 or cdk2 were resistant to NGF-induced differentiation and growth suppression, and maintained high cdc2 or cdk2 kinase activity, respectively, during NGF treatment. In contrast, the NGF-treated parental cells showed a marked decline in these kinase activities after day 3. When PC12 cells were treated with specific inhibitors of cdc2/cdk2 (butyrolactone-I, olomoucin), they showed marked neurite extension and up-regulation of microtubule-associated protein 2 expression. In addition, treatment with mixtures of antisense oligonucleotides for cdc2 and cdk2 resulted in down-regulation of both cdc2 and cdk2 kinase activities as well as significant neurite outgrowth and up-regulation of microtubule-associated protein 2 expression. However, neurite outgrowth was not observed in cells treated with either single antisense oligonucleotide, or antisense cdc2 + cdk4 or cdk2 + cdk4 oligonucleotide mixtures. These results suggest that simultaneous down-regulation of cdc2 and cdk2 activity is sufficient and necessary for neuronal differentiation in PC12 cells.  相似文献   

7.
The p13suc1/p9CKShs proteins bind tightly to the cyclin-dependent kinases cdk1 and cdk2. The distantly related protein, p15cdk-BP, binds cdk4/6, cdk5 and cdk8. We now show that immobilized p15cdk-BP binds both an HMG-I kinase and a 35-kDa protein that cross-reacts with anti-PSTAIRE antibodies (PSTAIRE is a totally conserved motif located in subdomain III of cdk). This 'cdkX' and the HMG-I kinase also bind to an immobilized inhibitor of cdks (HD). Several properties clearly distinguish cdkX, and its associated HMG-I kinase, from known anti-PSTAIRE cross-reactive cdks: (a) cdkX migrates, in SDS/PAGE, in a position intermediate between prophase phosphorylated cdk1 and metaphase dephosphorylated cdk1; (b) in contrast with cdk1, cdkX and associated HMG-I kinase activity do not decrease following successive depletions on p9CKShs1-sepharose; (c) cdkX and associated HMG-I kinase activity, but not cdk1, decrease following depletions on immobilized inhibitor; (d) cdkX is expressed during the early development of sea urchin embryos; in contrast with cdk1/cyclin B kinase, the p15cdk-BP-bound HMG-I kinase is active throughout the cell cycle; compared with cdk1 it is active later in development; (e) p15cdk-BP-bound HMG-I kinase is essentially insensitive to powerful inhibitors of cdk such as purvalanol, roscovitine, olomoucine, p21cip1 and p16INK4A; HD is only moderately inhibitory. Altogether these results suggest the existence of a new cdk1-related kinase, possibly involved in the regulation of early development. The presence of this kinase in all organisms investigated so far, from plants to mammals, calls for its definitive identification.  相似文献   

8.
Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.  相似文献   

9.
Threonine 161 phosphorylation of p34cdc2 and its equivalent threonine 160 in p33cdk2 by cdk-activating kinase (CAK) is essential for the activation of these cyclin-dependent kinases. We have studied the expression and associated kinase activity of p40MO15, the catalytic subunit of CAK, during Xenopus oogenesis, meiotic maturation, and early development to understand in more detail how cdk kinases are regulated during these events. We find that p40MO15 is a stable protein with a half-life > 16 h that is accumulated during oogenesis. p40MO15 protein and its associated CAK activity are localized predominantly to the germinal vesicle; however, a small but significant proportion is found in the cytoplasm. The amount of p40MO15 detected in stage VI oocytes remains unchanged through meiotic maturation, fertilization, and early embryogenesis. Significantly, p40MO15 was found to be constitutively active during oogenesis, meiotic maturation, and the rapid mitotic cycles of early development. This suggests that regulation of p34cdc2 and p33cdk2 activity during cell cycle progression does not involve changes in the level or activity of p40MO15/CAK.  相似文献   

10.
The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells.  相似文献   

11.
The Xenopus cdk2 gene encodes a 32-kDa protein kinase with sequence similarity to the 34-kDa product of the cdc2 gene. Previous studies have shown that the kinase activity of the protein product of the cdk2 gene oscillates in the Xenopus embryonic cell cycle with a high in M-phase and a low in interphase. In the present study cdk2 was found not to be associated with any newly synthesized proteins during the cell cycle, but the enzyme did undergo periodic changes in phosphorylation. Upon exit from metaphase, cdk2 became increasingly phosphorylated on both tyrosine and serine residues, and labeling on these residues increased progressively until entry into mitosis, when tyrosine residues were markedly dephosphorylated. Phosphopeptide mapping of cdk2 demonstrated the major sites of phosphorylation were in a phosphopeptide with a pI of 3.7 that contained both phosphoserine and phosphotyrosine. This phosphopeptide accumulated in egg extracts blocked in S-phase with aphidicolin and was not evident in cdc2 immunoprecipitated under the same conditions. Under the same conditions cdc2 was phosphorylated primarily on a phosphopeptide containing both phosphothreonine and phosphotyrosine residues, most likely threonine 14 and tyrosine 15. Affinity-purified human GST-cdc25 was able to dephosphorylate and activate cdk2 isolated from interphase cells. Phosphopeptide mapping demonstrated that the phosphate was specifically removed from the same phosphopeptide identified as the major in vivo site of phosphorylation. These results demonstrate that cdk2 is regulated in the cell cycle by phosphorylation and dephosphorylation on both serine and tyrosine residues. Moreover, the increased phosphorylation of cdk2 in aphidicolin-blocked extracts and the ability of cdc25 to mediate cdk2 dephosphorylation in vitro suggest the possibility that cdk2 is part of the mechanism ensuring mitosis is not initiated until completion of DNA replication. It also implies cdc25 may have other functions in addition to the regulation of cdc2 kinase activity.  相似文献   

12.
In Alzheimer disease brain the activities of protein phosphatase (PP)-2A and PP-1 are decreased and the microtubule-associated protein tau is abnormally hyperphosphorylated at several sites at serine/threonine. Employing rat forebrain slices kept metabolically active in oxygenated artificial CSF as a model system, we investigated the role of PP-2A/PP-1 in the regulation of some of the major abnormally hyperphosphorylated sites of tau and the protein kinases involved. Treatment of the brain slices with 1.0 microM okadaic acid inhibited approximately 65% of PP-2A and produced hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422. No significant changes in the activities of glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinases cdk5 and cdc2 were observed. Calyculin A (0.1 microM) inhibited approximately 50% PP-1, approximately 20% PP-2A, 50% GSK-3 and approximately 30% cdk5 but neither inhibited the activity of cyclin AMP dependent protein kinase A (PKA) nor resulted in the hyperphosphorylation of tau at any of the above sites. Treatment of brain slices with 1 microM okadaic acid plus 0.1 microM calyculin A inhibited approximately 100% of both PP-2A and PP-1, approximately 80% of GSK-3, approximately 50% of cdk5 and approximately 30% of cdc2 but neither inhibited PKA nor resulted in the hyperphosphorylation of tau at any of the above sites. These studies suggest (i) that PP-1 upregulates the phosphorylation of tau at Ser 198/199/202 and Ser 396/404 indirectly by regulating the activities of GSK-3, cdk5 and cdc2 whereas PP-2A regulates the phosphorylation of tau directly by dephosphorylation at the above sites, and (ii) that a decrease in the PP-2A activity leads to abnormal hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422.  相似文献   

13.
This paper reports on the isolation of a novel class of plant serine/threonine protein kinase genes, MsK-1 , MsK-2 and MsK-3 . They belong to the superfamily of cdc2 -like genes, but show highest identity to the Drosophila shaggy and rat GSK-3 proteins (66–70%). All of these kinases share a highly conserved catalytic protein kinase domain. Different amino-terminal extensions distinguish the different proteins. The different plant kinases do not originate from differential processing of the same gene as is found for shaggy , but are encoded by different members of a gene family. Similarly to the shaggy kinases, the plant kinases show different organ-specific and stage-specific developmental expression patterns. Since the shaggy kinases play an important role in intercellular communication in Drosophila development, the MsK kinases are expected to perform a similar function in plants.  相似文献   

14.
Disruption of the pRb pathway is a common mechanism in tumor formation. The D-cyclin-associated kinases, cyclin-dependent kinase (cdk) 4 and cdk6, are important regulators of the G(1)-S phase transition and are elevated in several types of cancers, including gliomas. To investigate potential functional differences in these kinases, mouse astrocytes were taken from chimeric mice and propagated in tissue culture. These multipolar tissue-culture astrocytes were infected with viruses expressing either cdk4 or cdk6. Interestingly, expression of cdk6 resulted in a distinct and rapid morphology change from multipolar to bipolar. This change was not observed in control astrocytes or in astroyctes infected with cdk4. Several other differences in cdk4- and cdk6-infected cells were noted, including differential binding to a subset of cell-cycle inhibitor proteins and a distinct pattern of subcellular localization of these kinases. Immunoblot and immunofluorescence analyses revealed that cdk6-infected astrocytes had an altered expression profile of known markers of glial differentiation. Together, these data indicate several important differences between cdk4 and cdk6 that highlight unique functional roles for these cyclin-dependent kinases.  相似文献   

15.
In mammalian cells inhibition of the cdc2 function results in arrest in the G2-phase of the cell cycle. Several cdc2-related gene products have been identified recently and it has been hypothesized that they control earlier cell cycle events. Here we have studied the relationship between activation of one of these cdc2 homologs, the cdk2 protein kinase, and the progression through the cell cycle in cultured human fibroblasts. We found that cdk2 was activated and specifically localized to the nucleus during S phase and G2. Microinjection of affinity-purified anti-cdk2 antibodies but not of affinity-purified anti-cdc2 antibodies, during G1, inhibited entry into S phase. The specificity of these effects was demonstrated by the fact that a plasmid-driven cdk2 overexpression counteracted the inhibition. These results demonstrate that the cdk2 protein kinase is involved in the activation of DNA synthesis.  相似文献   

16.
Chen S  Yin X  Zhu X  Yan J  Ji S  Chen C  Cai M  Zhang S  Zong H  Hu Y  Yuan Z  Shen Z  Gu J 《The Journal of biological chemistry》2003,278(22):20029-20036
The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.  相似文献   

17.
Cyclin-dependent kinases (cdks) are a family of proteins whose function plays a critical role in cell cycle traverse. Transforming growth factor-β1 (TGF-β1) is a potent growth inhibitor of epithelial cells. Since cdks have been suggested as possible biochemical markers for TGF-β growth inhibition, we investigated the effect of TGF-β1 on cdc2 and cdk2 in a normal mouse mammary epithelial cell line (MME) and a TGF-β-resistant MME cell line (BG18.2). TGF-β1 decreases newly synthesized cdc2 protein levels within 6 h after addition. Coincident with this decrease in newly synthesized cdc2 protein was a marked reduction in its ability to phosphorylate histone H1. This decrease in kinase activity is not due to a change in steady-state levels of cdc2 protein, since mRNA and total protein levels of cdc2 are not reduced until 12 h after TGF-β1 addition. This suggests that the kinase activity of cdc2 is dependent on newly synthesized cdc2 protien. Moreover, the protein synthesis of another cyclin-dependent kinase, cdk2, is not effected by TGF-β1 addition, but its kinase activity is substantially reduced. Thus, it appears that TGF-β decreases the kinase activity of both cdc2 and cdk2 by distinct mechanisms.  相似文献   

18.
Before initiation of DNA replication, origin recognition complex (ORC) proteins, cdc6, and minichromosome maintenance (MCM) proteins bind to chromatin sequentially and form preinitiation complexes. Using Xenopus laevis egg extracts, we find that after the formation of these complexes and before initiation of DNA replication, cdc6 is rapidly removed from chromatin, possibly degraded by a cdk2-activated, ubiquitin-dependent proteolytic pathway. If this displacement is inhibited, DNA replication fails to initiate. We also find that after assembly of MCM proteins into preinitiation complexes, removal of the ORC from DNA does not block the subsequent initiation of replication. Importantly, under conditions in which both ORC and cdc6 protein are absent from preinitiation complexes, DNA replication is still dependent on cdk2 activity. Therefore, the final steps in the process leading to initiation of DNA replication during S phase of the cell cycle are independent of ORC and cdc6 proteins, but dependent on cdk2 activity.  相似文献   

19.
Amphiphysin 1 is a phosphoprotein expressed at high levels in neurons, where it participates in synaptic vesicle endocytosis and neurite outgrowth. It is a substrate for cyclin-dependent kinase (cdk) 5, a member of the cyclin-dependent protein kinase family, which has been functionally linked to neuronal migration and neurite outgrowth via its action on the actin cytoskeleton. The yeast homologue of amphiphysin, Rvs167, functions in endocytosis and actin dynamics, is phosphorylated by the cdk5 homologue Pho85, and binds the Pho85 regulatory subunit Pcl2. We show here that amphiphysin 1 interacts with the cdk5-activating subunit p35 and that this interaction is mediated by the conserved NH2-terminal region of amphiphysin. Amphiphysin 1 colocalizes with p35 in the growth cones of neurons and at actin-rich peripheral lamellipodia in transfected fibroblasts. Amphiphysin is phosphorylated by cdk5 in a region including serines 272, 276, and 285. Amphiphysin 1 is also phosphorylated by the cdc2/cyclin B kinase complex in the same region and undergoes mitotic phosphorylation in dividing cells. These data indicate that phosphorylation by members of the cyclin-dependent kinase family is a conserved property of amphiphysin and suggest that this phosphorylation may play an important physiological role both in mitosis and in differentiated cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号