首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.  相似文献   

2.
The ability of microorganisms to use chlorate (ClO3-) as an electron acceptor for respiration under anaerobic conditions was studied in batch and continuous tests. Complex microbial communities were cultivated anaerobically in defined media containing chlorate, all essential minerals, and acetate as the sole energy and carbon source. It was shown that chlorate was reduced to chloride, while acetate was oxidized to carbon dioxide and water and used as the carbon source for synthesis of new biomass. A biomass yield of 1.9 to 3.8 g of volatile suspended solids per equivalent of available electrons was obtained, showing that anaerobic growth with chlorate as an electron acceptor gives a high energy yield. This indicates that microbial reduction of chlorate to chloride in anaerobic systems is coupled with electron transport phosphorylation.  相似文献   

3.
A new type of sulfate-reducing bacteria with ellipsoidal to lemon-shaped cells was regularly enriched from anaerobic freshwater and marine mud samples when mineral media with propionate and sulfate were used. Three strains (1pr3, 2pr4, 3pr10) were isolated in pure culture. Propionate, lactate and alcohols were used as electron donors and carbon sources. Growth on H2 required acetate as a carbon source in the presence of CO2. Stoichiometric measurements revealed that oxidation of propionate was incomplete and led to acetate as an endproduct. Instead of sulfate, strain 1pr3 was shown to reduce sulfite and thiosulfate to H2S; nitrate also served as electron acceptor and was reduced to ammonia. With lactate or pyruvate, all three strains were able to grow without external electron acceptor and formed propionate and acetate as fermentation products. None of the strains contained desulfoviridin. In strain 1pr3 cytochromes of the b- and c-type were identified. Strain 1pr3 is described as type strain of the new species and genus, Desulfobulbus propionicus.  相似文献   

4.
A gram-positive, hexavalent chromium [chromate: Cr(VI)]-tolerant bacterium, isolated from tannery waste from Pakistan, was identified as a Microbacterium sp. by 16S rRNA gene sequence homology. The strain (designated as MP30) reduced toxic Cr(VI) only under anaerobic conditions at the expense of acetate as the electron donor. The bacterium was able to grow aerobically in L-broth supplemented with 15 mM CrO4(2-) but then did not reduce Cr(VI). At a concentration of 2.4x10(9) cells/ml, 100 microM sodium chromate was reduced within 30 h; however, the maximum specific reduction rate was obtained at lower initial cell concentrations.  相似文献   

5.
An anaerobic bacterium, strain DP7, was isolated from human feces in mineral medium with formate and 0.02% yeast extract as energy and carbon source. This rod-shaped motile bacterium used pyruvate, lactate, formate, hydrogen, butyrate, and ethanol as electron donor for sulfite reduction. Other electron acceptors such as thiosulfate, nitrate and fumarate stimulated growth in the presence of 0.02% yeast extract and formate. Acetate was the only product during fermentative growth on pyruvate. Six mol of pyruvate were fermented to 7 mol of acetate. 13C-NMR labeling experiments showed homoacetogenic 13C-CO2 incorporation into acetate. The pH and temperature optimum of fermentative growth on pyruvate was 7.4 and 37 degrees C, respectively. The growth rate under these conditions was approximately 0.10 h(-1). Strain DP7 was identified as a new strain of Desulfitobacterium frappieri on the basis of 16S rRNA sequence analysis (99% similarity) and DNA-DNA hybridization (reassociation value of 83%) with Desulfitobacterium frappieri TCE1. In contrast to described Desulfitobacterium strains, the newly isolated strain has not been isolated from a polluted environment and did not use chloroethenes or chlorophenols as electron acceptor.  相似文献   

6.
Thauera selenatis was grown anaerobically in minimal medium with either selenate or nitrate as the terminal electron acceptor and acetate as the carbon source and electron donor. The molar cell protein yields, YM-protein (selenate) and YM-protein (nitrate), were found to be 7.8 g cell protein/mol selenite formed and 7.5 g cell protein/mol nitrite formed, respectively. These values represent YM values of 57 and 55 g (dry weight)/mol acetate when selenate or nitrate was the electron acceptor, respectively. Based upon a calculated YATP value of 10.0 g (dry weight) cells/mol ATP, for growth on acetate in inorganic salts, growth with selenate as the terminal electron acceptor theoretically yielded 5.7 ATP/acetate oxidized, and 5.5 ATP when nitrate was the terminal electron acceptor. The results support the conclusion that energy is conserved via electron transport phosphorylation when selenate or nitrate reduction are the terminal electron acceptors during anaerobic growth with acetate.  相似文献   

7.
A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.  相似文献   

8.
The microorganisms involved in sulfate-dependent anaerobic oxidation of methane (AOM) have not yet been isolated. In an attempt to stimulate the growth of anaerobic methanotrophs and associated sulfate reducing bacteria (SRB), Eckernf?rde Bay sediment was incubated with different combinations of electron donors and acceptors. The organisms involved in AOM coupled to sulfate reduction (ANME-1, ANME-2, and Desulfosarcina/Desulfococcus) were monitored using specific primers and probes. With thiosulfate as sole electron acceptor and acetate, pyruvate or butyrate as the sole electron donor, ANME-1 became the dominant archaeal species. This finding suggests that ANME-1 archaea are not obligate methanotrophs and that ANME-1 can grow on acetate, pyruvate or butyrate.  相似文献   

9.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   

10.
A bacterium capable of anaerobic growth via reductive dehalogenation of 2-chlorophenol was isolated from a culture enriched from sediment taken from a small stream near Lansing, Mich. The organism, designated strain 2CP-1, is a gram-negative rod ca. 3 by 0.5 micron in size and is a catalase-negative, oxidase-negative, facultative anaerobe that forms small red colonies in anaerobic media. The organism grew in reduced anaerobic mineral medium supplemented with 2-chlorophenol, acetate, and vitamins, producing phenol as a product. It did not grow when either 2-chlorophenol or acetate was omitted. The growth yield was about 3 g of protein per mol of 2-chlorophenol dechlorinated, and the doubling time was 3.7 days. Only the ortho position was dehalogenated, and additional chlorines at other positions decreased or blocked ortho dechlorination. The organism also grew with fumarate as its electron acceptor. Dechlorination activity is inducible, since cultures grown in fumarate containing medium with 2-chlorophenol rapidly dechlorinated additional 2-chlorophenol, while cultures grown in the same medium without 2-chlorophenol did not. Analysis of the organism's 16S rRNA sequence revealed that it is a member of the delta proteobacteria, more closely related to the myxobacteria than to the sulfidogenic bacteria.  相似文献   

11.
Pyruvate:quinone oxidoreductase catalyzes the oxidative decarboxylation of pyruvate to acetate and CO2 with a quinone as the physiological electron acceptor. So far, this enzyme activity has been found only in Escherichia coli. Using 2,6-dichloroindophenol as an artificial electron acceptor, we detected pyruvate:quinone oxidoreductase activity in cell extracts of the amino acid producer Corynebacterium glutamicum. The activity was highest (0.055 +/- 0.005 U/mg of protein) in cells grown on complex medium and about threefold lower when the cells were grown on medium containing glucose, pyruvate, or acetate as the carbon source. From wild-type C. glutamicum, the pyruvate:quinone oxidoreductase was purified about 180-fold to homogeneity in four steps and subjected to biochemical analysis. The enzyme is a flavoprotein, has a molecular mass of about 232 kDa, and consists of four identical subunits of about 62 kDa. It was activated by Triton X-100, phosphatidylglycerol, and dipalmitoyl-phosphatidylglycerol, and the substrates were pyruvate (kcat=37.8 +/- 3 s(-1); Km=30 +/- 3 mM) and 2-oxobutyrate (kcat=33.2 +/- 3 s(-1); Km=90 +/- 8 mM). Thiamine pyrophosphate (Km=1 microM) and certain divalent metal ions such as Mg2+ (Km=29 microM), Mn2+ (Km=2 microM), and Co2+ (Km=11 microM) served as cofactors. In addition to several dyes (2,6-dichloroindophenol, p-iodonitrotetrazolium violet, and nitroblue tetrazolium), menadione (Km=106 microM) was efficiently reduced by the purified pyruvate:quinone oxidoreductase, indicating that a naphthoquinone may be the physiological electron acceptor of this enzyme in C. glutamicum.  相似文献   

12.
Understanding the mechanisms of anaerobic microbial iron cycling is necessary for a full appreciation of present‐day biogeochemical cycling of iron and carbon and for drawing conclusions about these cycles on the ancient Earth. Towards that end, we isolated and characterized an anaerobic nitrate‐dependent Fe(II)‐oxidizing bacterium from a freshwater sediment. The 16SrRNA gene sequence of the isolated bacterium (strain BoFeN1) places it within the β‐Proteobacteria, with Acidovorax sp. strain G8B1 as the closest known relative. During mixotrophic growth with acetate plus Fe(II) and nitrate as electron acceptor, strain BoFeN1 forms Fe(III) mineral crusts around the cells. The amount of the organic cosubstrate acetate present seems to control the rate and extent of Fe(II) oxidation and the viability of the cells. The crystallinity of the mineral products is influenced by nucleation by Fe minerals that are already present in the inoculum.  相似文献   

13.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

14.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

15.
Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H(2) or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark (14)CO(2) fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the gamma-PROTEOBACTERIA: Arsenite oxidation has never been reported for any members of this subgroup of the PROTEOBACTERIA:  相似文献   

16.
Biological Cr(VI) reduction was studied in anaerobic sediments from an aquifer in Norman, Okla. Microcosms containing sediment and mineral medium were amended with various electron donors to determine those most important for biological Cr(VI) reduction. Cr(VI) (about 340 microM) was reduced with endogenous substrates (no donor), or acetate was added. The addition of formate, hydrogen, and glucose stimulated Cr(VI) reduction compared with reduction in unamended controls. From these sediments, an anaerobic Cr(VI)-utilizing enrichment was obtained that was dependent upon hydrogen for both growth and Cr(VI) reduction. No methane was produced by the enrichment, which reduced about 750 microM Cr(VI) in less than six days. The dissolved hydrogen concentration was used as an indicator of the terminal electron accepting process occurring in the sediments. Microcosms with sediments, groundwater, and chromate metabolized hydrogen to a concentration below the detection limits of the mercury vapor gas chromatograph. In microcosms without chromate, the hydrogen concentration was about 8 nM, a concentration comparable to that under methanogenic conditions. When these microcosms were amended with 500 microM Cr(VI), the dissolved hydrogen concentration quickly fell below the detection limits. These results showed that the hydrogen concentration under chromate-reducing conditions became very low, as low as that reported under nitrate- and manganese-reducing conditions, a result consistent with the free energy changes for these reactions. The utilization of formate, lactate, hydrogen, and glucose as electron donors for Cr(VI) reduction indicates that increasing the availability of hydrogen results in a greater capacity for Cr(VI) reduction. This conclusion is supported by the existence of an enrichment dependent upon hydrogen for growth and Cr(VI) reduction.  相似文献   

17.
Summary The effects of nitrate on phosphorus release and uptake in a sequencing batch reactor for biological phosphorus removal was investigated. The addition of nitrate decreased phosphorus release in the anaerobic stage. The synthesis of poly(hydroxyalkanoates) was decreased with the presence of nitrate, possibly due to the competitive utilization of the carbon source by PHA synthesis and denitrification of nitrate. Instead of oxygen, nitrate could be used as an electron acceptor for phosphorus removal. However, the simultaneous addition of nitrate and acetate greatly reduced the phosphorus removal rate. Phosphate and nitrate could be removed simultaneously with nitrate as the electron acceptor, and the continuous and steady feeding of nitrate was beneficial to phosphate removal.  相似文献   

18.
The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants.  相似文献   

19.
Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10(9) cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 microM for o-xylene and 1,800 microM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or contaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites.  相似文献   

20.
A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35°C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号