首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

2.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

3.
Epidemiologic and genetic data suggest an inverse relationship between plasma high density lipoprotein (HDL) cholesterol and the incidence of premature coronary artery disease. Some of the defects leading to low levels of HDL may be a consequence of mutations in the genes coding for HDL apolipoproteins A-I and A-II or for enzymes that modify these particles. A proband with plasma apoA-I and HDL cholesterol that are below 15% of normal levels and with marked bilateral arcus senilis was shown to be heterozygous for a 45-base pair deletion in exon four of the apoA-I gene. This most likely represents a de novo mutation since neither parent carries the mutant allele. The protein product of this allele is predicted to be missing 15 (Glu146-Arg160) of the 22 amino acids comprising the third amphipathic helical domain. The HDL of the proband and his family were studied. Using anti-A-I and anti-A-II immunosorbents we found three populations of HDL particles in the proband. One contained both apoA-I and A-II, Lp(A-I w A-II); one contained apoA-I but no A-II, Lp(A-I w/o A-II); and the third (an unusual one) contained apoA-II but no A-I. Only Lp(A-I w A-II) and (A-I w/o A-II) were present in the plasma of the proband's parents and brother. Analysis of the HDL particles of the proband by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two protein bands with a molecular mass differing by 6% in the vicinity of 28 kDa whereas the HDL particles of the family members exhibited only a single apoA-I band. The largely dominant effect of this mutant allele (designated apoA-ISeattle) on HDL levels suggests that HDL particles containing any number of mutant apoA-I polypeptides are catabolized rapidly.  相似文献   

4.
High density lipoproteins (HDL) mediate reverse cholesterol transport as well as the clearance of oxidation products or inflammatory mediators, thereby contributing to tissue integrity. The decrease in HDL in inflammation has been attributed to decreased lecithin:cholesterol acyltransferase activity, whereas the role of phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein has not been analyzed in detail. We have studied the activities of HDL-modifying proteins and the heterogeneity of HDL in healthy control subjects and three groups of postsurgery patients: no bacterial infection (group 1), bacterial focus and systemic inflammatory response (group 2), and severe sepsis (group 3). For all patients, a decrease in total HDL could be demonstrated, with a loss of mainly large, apolipoprotein A-I (apoA-I) HDL particles, an almost total loss of apoC-I, and an increase in apoE HDL (200-500 kDa), which did not contain significant amounts of apoA-I, apoA-II, or apoC-I. PLTP activity was increased in patients of groups 2 and 3, paralleled by a redistribution of PLTP into a population of small (120- to 200-kDa) particles, probably representing PLTP homodimers or lipid-complexed PLTP.In summary, the increase in apoE HDL and PLTP activity may improve the delivery of energy substrates and phospholipids to tissues that must maintain cellular membrane homeostasis under conditions of inflammatory stress.  相似文献   

5.
Recent immunoaffinity studies demonstrate two populations of high density lipoprotein (HDL) particles: one contains both apolipoprotein (apo) A-I and A-II [Lp(A-I w A-II)], and the other contains apoA-I but no A-II [Lp(A-I w/o A-II)]. To investigate whether these two populations are derived from different precursors, we applied sequential immunoaffinity chromatography to study the lipoprotein complexes in HepG2 conditioned serum-free medium. The apparent secretion rates of apoA-I, A-II, E, D, A-IV, and lecithin:cholesterol acyltransferase (LCAT) were 4013 +/- 1368, 851 +/- 217, 414 +/- 64, 171 +/- 51, 32 +/- 14, and 2.9 +/- 0.7 ng/mg cell protein per 24 h, respectively (n = 3-5). Anti-A-II removed all apoA-II but only 39 +/- 5% (n = 5) apoA-I from the medium. These HepG2 Lp(A-I w A-II) also contained 31 +/- 1% (n = 5) of the apoD and 82 +/- 2% (n = 3) of the apoE in the medium. The apoE existed both as E and E-A-II complex. Lipoproteins isolated from the apoA-II-free medium by anti-A-I contained, besides apoA-I, 60 +/- 3% of the medium apoD and trace quantities of apoE. The majority of HepG2 apoA-IV (78 +/- 4%) (n = 3) and LCAT (85 +/- 6%) (n = 3) was not associated with either apoA-I or A-II. HepG2 Lp(A-I w A-II) contained relatively more lipids than Lp(A-I w/o A-II) (45 vs. 37%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.  相似文献   

7.
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways.  相似文献   

8.
Since spheroidal HDL particles (sHDL) are highly dynamic, molecular dynamics (MD) simulations are useful for obtaining structural models. Here we use MD to simulate sHDL with stoichiometries of reconstituted and circulating particles. The hydrophobic effect during simulations rapidly remodels discoidal HDL containing mixed lipids to sHDL containing a cholesteryl ester/triglyceride (CE/TG) core. We compare the results of simulations of previously characterized reconstituted sHDL particles containing two or three apoA-I created in the absence of phospholipid transfer protein (PLTP) with simulations of circulating human HDL containing two or three apoA-I without apoA-II. We find that circulating sHDL compared with reconstituted sHDL with the same number of apoA-I per particle contain approximately equal volumes of core lipid but significantly less surface lipid monolayers. We conclude that in vitro reconstituted sHDL particles contain kinetically trapped excess phospholipid and are less than ideal models for circulating sHDL particles. In the circulation, phospholipid transfer via PLTP decreases the ratio of phospholipid to apolipoprotein for all sHDL particles. Further, sHDL containing two or three apoA-I adapt to changes in surface area by condensation of common conformational motifs. These results represent an important step toward resolving the complicated issue of the protein and lipid stoichiometry of circulating HDL.  相似文献   

9.
We hypothesized that small HDL particles, containing two apoA-I molecules but no apoA-II (LpAI), may be converted in vivo into medium and large HDL particles, containing three or four apoA-I molecules, respectively, and that more conversion will occur in animals with higher HDL concentrations. To test this possibility, kinetic studies of small LpAI were performed in African green monkeys with either high plasma HDL cholesterol concentrations (120 +/- 36 mg/dl, mean +/- SD, n = 3) or low plasma HDL cholesterol concentrations (40 +/- 13 mg/dl, n = 3). Tracer small LpAI was purified, without ultracentrifugation, by immunoaffinity and gel filtration. After injection, the specific activity of apoA-I in small, medium, and large HDL, consisting of both LpAI and LpAI:AII particles, was followed. A multicompartmental model was developed with the simultaneous analysis of urine and plasma turnover data for the kinetics of apoA-I in small, medium, and large HDL. These analyses indicated that small HDL is converted to either medium or large HDL with little or no interconversion of medium HDL and large HDL. Much of the metabolic conversion of small HDL occurs in a sequestered pool, effectively outside the circulating plasma, in a unidirectional manner before reentering the circulating plasma as medium or large HDL. The mean fractional catabolic rate of apoA-I in small, medium, and large HDL was not different comparing the high and low HDL group. In contrast, the mean production rate of apoA-I was greater in the high HDL group compared with the low HDL group. These data support the hypothesis that the plasma concentration of HDL is primarily a function of the rate of appearance of apoA-I in medium and large HDL.  相似文献   

10.
We investigated the lipoprotein distribution and composition in cerebrospinal fluid (CSF) in a group of patients with Alzheimer's disease (AD) or affected by other types of dementia in comparison to non-demented controls. We found slightly decreased apolipoprotein (apo)E and cholesterol concentrations in CSF of AD patients and moderately increased apoA-I concentrations, while in patients suffering from other types of dementia the apoA-I CSF concentration was increased. ApoA-IV concentrations varied widely in human CSF, but were not associated with any clinical condition. HDL(2)-like apoE-containing lipoproteins represent the major lipoprotein fraction. In CSF of normal controls, only a minor HDL(3)-like apoA-I-containing lipoprotein fraction was observed; this fraction was more prevalent in AD patients. ApoA-II was recovered mostly in the HDL(3) density range, while apoA-IV was not associated with lipoproteins but appeared in a lipid-free form, co-localizing with LCAT immunoreactivity. Bi-dimensional analysis demonstrated pre-beta and alpha apoA-I-containing particles; apoE and apoA-II were detected only in alpha-migrating particles. ApoA-IV distributed both to pre-beta and gamma-migrating particles; the LCAT signal was co-localized in this gamma-migrating fraction. Enzymatically active LCAT was present in human CSF as well as PLTP activity and mass; no CETP mass was detected. In CSF from AD patients, LCAT activity was 50% lower than in CSF from normal controls. CSF lipoproteins induced a significant cholesterol efflux from cultured rat astrocytes, suggesting that they play an active role in maintaining the cholesterol homeostasis in brain cells.  相似文献   

11.
The plasma phospholipid transfer protein (PLTP) plays an important role in the regulation of plasma high density lipoprotein (HDL) levels and governs the distribution of HDL sub-populations. In the present study, adenovirus mediated overexpression of human PLTP in mice was employed to investigate the distribution of PLTP in serum and its effect on plasma lipoproteins. Gel filtration experiments showed that the distributions of PLTP activity and mass in serum are different, suggesting that human PLTP circulated in mouse plasma as two distinct forms, one with high and the other with low specific activity. Our study further demonstrates that overexpression of PLTP leads to depletion of HDL and that, as PLTP activity declines, replenishment of the HDL fraction occurs. During this process, the lipoprotein profile displays transient particle populations, including apoA-IV and apoE-rich particles in the LDL size range and small particles containing apoA-II only. The possible role of these particles in HDL reassembly is discussed. The increased PLTP activity enhanced the ability of mouse sera to produce pre(beta)-HDL. The present results provide novel evidence that PLTP is an important regulator of HDL metabolism and plays a central role in the reverse cholesterol transport (RCT) process.  相似文献   

12.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and associates with high density lipoproteins (HDL). We have characterized the distribution of GPI-PLD among lipoproteins in human plasma. Apolipoprotein (apo)-specific lipoproteins containing apoB (Lp[B]), apoA-I and A-II (Lp[A-I, A-II]), or apoA-I only (Lp[A-I]) were isolated using dextran sulfate and immunoaffinity chromatography. In six human plasma samples with HDL cholesterol ranging from 39 to 129 mg/dl, 79 +/- 14% (mean +/- SD) of the total plasma GPI-PLD activity was associated with Lp[A-I], 9 +/- 12% with Lp[A-I, A-II], and 1 +/- 1% with Lp[B]; and 11 +/- 10% was present in plasma devoid of these lipoproteins. Further characterization of the GPI-PLD-containing lipoproteins by gel-filtration chromatography and nondenaturing polyacrylamide and agarose gel electrophoresis revealed that these apoA-I-containing particles/complexes were small (8 nm) and migrated with pre-beta particles on agarose electrophoresis. Immunoprecipitation of GPI-PLD with a monoclonal antibody to GPI-PLD co-precipitated apoA-I and apoA-IV but little or no apoA-II, apoC-II, apoC-III, apoD, or apoE. In vitro, apoA-I but not apoA-IV or bovine serum albumin interacted directly with GPI-PLD, but did not stimulate GPI-PLD-mediated cleavage of a cell surface GPI-anchored protein. Thus, the majority of plasma GPI-PLD appears to be specifically associated with a small, discrete, and minor fraction of lipoproteins containing apoA-I and apoA-IV. -- Deeg, M. A., E. L. Bierman, and M. C. Cheung. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J. Lipid Res. 2001. 42: 442--451.  相似文献   

13.
The plasma phospholipid transfer protein (PLTP) plays an important role in the regulation of plasma high density lipoprotein (HDL) levels and governs the distribution of HDL sub-populations. In the present study, adenovirus mediated overexpression of human PLTP in mice was employed to investigate the distribution of PLTP in serum and its effect on plasma lipoproteins. Gel filtration experiments showed that the distributions of PLTP activity and mass in serum are different, suggesting that human PLTP circulated in mouse plasma as two distinct forms, one with high and the other with low specific activity. Our study further demonstrates that overexpression of PLTP leads to depletion of HDL and that, as PLTP activity declines, replenishment of the HDL fraction occurs. During this process, the lipoprotein profile displays transient particle populations, including apoA-IV and apoE-rich particles in the LDL size range and small particles containing apoA-II only. The possible role of these particles in HDL reassembly is discussed. The increased PLTP activity enhanced the ability of mouse sera to produce preβ-HDL. The present results provide novel evidence that PLTP is an important regulator of HDL metabolism and plays a central role in the reverse cholesterol transport (RCT) process.  相似文献   

14.
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.  相似文献   

15.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

16.
The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein. Here, we show that processing of HDL(2) by SR-BI-overexpressing mice resulted in the preferential loss of apolipoprotein A-II (apoA-II). Short-term processing generated two distinct, small alpha-migrating particles. One particle (8.0 nm diameter) contained apoA-I and apoA-II; the other particle (7.7 nm diameter) contained only apoA-I. With extensive SR-BI processing, only the 7.7 nm particle remained. Only the 8.0 nm remnants were able to associate with HDL. Compared with HDL(2), this remnant was more readily taken up by the liver than by the kidney. We conclude that SR-BI-generated HDL remnants consist of particles with or without apoA-II and that only those containing apoA-II associate with HDL in an enzyme-independent manner. Extensive SR-BI processing generates small apoA-II-depleted particles unable to reassociate with HDL and readily taken up by the liver. This represents a pathway by which apoA-I and apoA-II catabolism are segregated.  相似文献   

17.
The African trypanosome, Trypanosoma brucei brucei causes a fatal wasting disease in livestock but does not ordinarily infect humans, apparently because this unicellular parasite is lysed by high density lipoproteins (HDL) in human serum. To assess whether there is a specific active constituent in trypanolytic HDL, we have systematically compared the cytotoxic action on T.b.brucei in vitro of native and delipidated HDL, and of individual apolipoproteins, from nonpermissive hosts (human and baboon) with their counterparts from susceptible hosts (cattle and sheep). When suspensions of trypanosomes were incubated for 2 h at 37 degrees C with human or baboon plasma most cells were lysed, but not with bovine or sheep plasma. Similarly, HDL isolated from human and baboon plasma were trypanolytic (typically about 95% and 60% lysis, respectively, at 1 mg protein/ml), whereas bovine and sheep HDL were benign (less than 8% lysis). Subfractionation of human HDL by serial isopycnic ultracentrifugation and by heparin-Sepharose affinity chromatography established that the denser and smaller particles had greater trypanolytic activity both in vitro and in vivo. When human HDL was delipidated, the trypanocidal activity was associated with the water-soluble protein (apolipoprotein) fraction and not with the lipid constituents. Bovine apolipoproteins were also weakly trypanolytic in free solution (20-40% lysis), but not when complexed with cholesterol-phospholipid liposomes (less than 10% lysis). The major apolipoprotein of human HDL, apolipoprotein (apo) A-I had full trypanolytic activity (89-95% lysis at 1 mg protein/ml) when purified, whether in solution or incorporated into liposomes, but other apolipoproteins isolated from human HDL, including apoA-II, apoC, and apoE, were nontrypanolytic. Purified baboon apoA-I was also trypanolytic, though less potent than human apoA-I, but apoA-I from permissive hosts (cattle and sheep) was inactive when presented in liposomes. Incubation of bovine or sheep HDL with purified human apoA-I, and subsequent separation of the HDL by ultracentrifugation, produced chimeric HDL containing significant amounts of the human apolipoprotein; these particles showed appreciable trypanolytic activity. By contrast, human HDL particles in which about 70% of the apoA-I had been displaced with apoA-II had markedly reduced lytic properties compared to the native HDL (30% versus 80% lysis at 0.6 mg total protein/ml). We tentatively conclude that the trypanolytic activity of native human or baboon plasma resides in the apoA-I content of the HDL particles and that, conversely, bovine and sheep plasma are inactive because the apoA-I polypeptide present in their HDL lacks trypanocidal activity.  相似文献   

18.
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism and reverse cholesterol transport. We have recently reported that plasma PLTP concentration correlates positively with plasma HDL cholesterol (HDL-C) but not with PLTP activity in healthy subjects. We have also shown that PLTP exists as active and inactive forms in healthy human plasma. In the present study, we measured plasma PLTP concentration and PLTP activity, and analyzed the distribution of PLTP in normolipidemic subjects (controls), cholesteryl ester transfer protein (CETP) deficiency, and hypo-alphalipoproteinemia (hypo-ALP). Plasma PLTP concentration was significantly lower (0.7 +/- 0.4 mg/l, mean +/- SD, n = 9, P < 0.001) in the hypo-ALP subjects, and significantly higher (19.5 +/- 4.3 mg/l, n = 17, P < 0.001) in CETP deficiency than in the controls (12.4 +/- 2.3 mg/l, n = 63). In contrast, we observed no significant differences in plasma PLTP activity between controls, hypo-ALP subjects, and CETP deficiency (6.2 +/- 1.3, 6.1 +/- 1.8, and 6.8 +/- 1.2 micro mol/ml/h, respectively). There was a positive correlation between PLTP concentration and plasma HDL-C (r = 0.81, n = 89, P < 0.001). By size exclusion chromatography analysis, we found that the larger PLTP containing particles without PLTP activity (inactive form of PLTP) were almost absent in the plasma of hypo-ALP subjects, and accumulated in the plasma of CETP deficiency compared with those of controls. These results indicate that the differences in plasma PLTP concentrations between hypo-ALP subjects, CETP deficiency, and controls are mainly due to the differences in the amount of the inactive form of PLTP.  相似文献   

19.
Two types of A-I-containing lipoproteins are found in human high density lipoproteins (HDL): particles with A-II (Lp(A-I with A-II] and particles without A-II (Lp(A-I without A-II]. We have studied the distribution of lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer (CET) activities in these particles. Lp(A-I with A-II) and Lp(A-I without A-II) particles were isolated from ten normolipidemic subjects by anti-A-I and anti-A-II immunosorbents. Most plasma LCAT mass (70 +/- 15%), LCAT (69 +/- 16%), and CET (81 +/- 15%) activities were detected in Lp(A-I without A-II). Some LCAT (mass: 16 +/- 7%, activity: 17 +/- 8%) and CET activities (7 +/- 8%) were detected in Lp(A-I with A-II). To determine the size subspecies that contain LCAT and CET activities, isolated Lp(A-I with A-II) and Lp(A-I without A-II) particles of six subjects were further fractionated by gel filtration column chromatography. In Lp(A-I without A-II), most LCAT and CET activities were associated with different size particles, with the majority of the LCAT and CET activities located in particles with hydrated Stokes diameters of 11.6 +/- 0.4 nm and 10.0 +/- 0.6 nm, respectively. In Lp(A-I with A-II), most of the LCAT and CET activities were located in particles similar in size: 11.1 +/- 0.4 nm and 10.6 +/- 0.3 nm, respectively. Ultracentrifugation of A-I-containing lipoproteins resulted in dissociation of both LCAT and CET activities from the particles. Furthermore, essentially all CET and LCAT activities were recovered in the non-B-containing plasma obtained by anti-LDL immunoaffinity chromatography. This report, therefore, provides direct evidence for the association of LCAT and CET protein with A-I-containing lipoproteins. Our conclusions pertain to fasting normolipidemic subjects and may not be applicable to hyperlipidemic or nonfasting subjects.  相似文献   

20.
Plasma phospholipid transfer protein (PLTP) is a factor that plays an important role in HDL metabolism. In this study we present data suggesting that PLTP has an inherent protease activity. After incubation of HDL3 in the presence of purified plasma PLTP, the d < 1.25 g/ml particles (fusion particles) contained intact 28.2 kDa apoA-I while the d > 1.25 g/ml fraction (apoA-I-PL complexes) contained, in addition to intact apoA-I, a cleaved 23 kDa form of apoA-I. Purified apoA-I was also cleaved by PLTP and produced a similar 23 kDa apoA-I fragment. The cleavage of apoA-I increased as a function of incubation time and the amount of PLTP added. The process displayed typically an 8-10 h lag or induction period, after which the cleavage proceeded in a time-dependent manner. This lag-phase was necessary for the development of the cleavage activity during incubation at 37 degrees C. The specific apoA-I cleavage activity of different PLTP preparations varied between 0.4-0.8 microg apoA-I degraded/h per 1000 nmol per h of PLTP activity. The 23 kDa apoA-I fragment reacted with monoclonal antibodies specific for the N-terminal part of apoA-I, indicating that the apoA-I cleavage occurred in the C-terminal portion. The apoA-I cleavage products were further characterized by mass spectrometry. The 23 kDa fragment yielded a mass of 22.924 kDa, demonstrating that the cleavage occurs in the C-terminal portion of apoA-I between amino acid residues 196 (alanine) and 197 (threonine). The intact apoA-I and the 23 kDa fragment revealed identical N-terminal amino acid sequences. The cleavage of apoA-I could be inhibited with APMSF and chymostatin, suggesting that it is due to a serine esterase-type of proteolytic activity. Recombinant PLTP produced in CHO cells or using the baculovirus-insect cell system caused an apoA-I cleavage pattern identical to that obtained with plasma PLTP. The present results raise the question of whether PLTP-mediated proteolytic cleavage of apoA-I might affect plasma HDL metabolism by generating a novel kinetic compartment of apoA-I with an increased turnover rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号