首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Haseman-Elston (HE) regression method offers a mathematically and computationally simpler alternative to variance-components (VC) models for the linkage analysis of quantitative traits. However, current versions of HE regression and VC models are not optimised for binary traits. Here, we present a modified HE regression and a liability-threshold VC model for binary-traits. The new HE method is based on the regression of a linear combination of the trait squares and the trait cross-product on the proportion of alleles identical by descent (IBD) at the putative locus, for sibling pairs. We have implemented both the new HE regression-based method and have performed analytic and simulation studies to assess its type 1 error rate and power under a range of conditions. These studies showed that the new HE method is well-behaved under the null hypothesis in large samples, is more powerful than both the original and the revisited HE methods, and is approximately equivalent in power to the liability-threshold VC model.  相似文献   

2.
The Haseman-Elston regression method offers a simpler alternative to variance-components (VC) models, for the linkage analysis of quantitative traits. However, even the "revisited" method, which uses the cross-product--rather than the squared difference--in sib trait values, is, in general, less powerful than VC models. In this report, we clarify the relative efficiencies of existing Haseman-Elston methods and show how a new Haseman-Elston method can be constructed to have power equivalent to that of VC models. This method uses as the dependent variable a linear combination of squared sums and squared differences, in which the weights are determined by the overall trait correlation between sibs in a population. We show how this method can be used for both the selection of maximally informative sib pairs for genotyping and the subsequent analysis of such selected samples.  相似文献   

3.
The Haseman and Elston (H-E) method uses a simple linear regression to model the squared trait difference of sib pairs with the shared allele identical by descent (IBD) at marker locus for linkage testing. Under this setting, the squared mean-corrected trait sum is also linearly related to the IBD sharing. However, the resulting slope estimate for either model is not efficient. In this report, we propose a simple linkage test that optimally uses information from the estimates of both models. We also demonstrate that the new test is more powerful than both the traditional one and the recently revisited H-E methods.  相似文献   

4.
The variance-components model is the method of choice for mapping quantitative trait loci in general human pedigrees. This model assumes normally distributed trait values and includes a major gene effect, random polygenic and environmental effects, and covariate effects. Violation of the normality assumption has detrimental effects on the type I error and power. One possible way of achieving normality is to transform trait values. The true transformation is unknown in practice, and different transformations may yield conflicting results. In addition, the commonly used transformations are ineffective in dealing with outlying trait values. We propose a novel extension of the variance-components model that allows the true transformation function to be completely unspecified. We present efficient likelihood-based procedures to estimate variance components and to test for genetic linkage. Simulation studies demonstrated that the new method is as powerful as the existing variance-components methods when the normality assumption holds; when the normality assumption fails, the new method still provides accurate control of type I error and is substantially more powerful than the existing methods. We performed a genomewide scan of monoamine oxidase B for the Collaborative Study on the Genetics of Alcoholism. In that study, the results that are based on the existing variance-components method changed dramatically when three outlying trait values were excluded from the analysis, whereas our method yielded essentially the same answers with or without those three outliers. The computer program that implements the new method is freely available.  相似文献   

5.
Li M  Boehnke M  Abecasis GR  Song PX 《Genetics》2006,173(4):2317-2327
Mapping and identifying variants that influence quantitative traits is an important problem for genetic studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can lead to inflated type I error, reduced power, and biased parameter estimates. To accommodate nonnormally distributed data, we developed and implemented a modified VC method, which we call the "copula VC method," that directly models the nonnormal distribution using Gaussian copulas. The copula VC method allows the analysis of continuous, discrete, and censored trait data, and the standard VC method is a special case when the data are distributed as multivariate normal. Through the use of link functions, the copula VC method can easily incorporate covariates. We use computer simulations to show that the proposed method yields unbiased parameter estimates, correct type I error rates, and improved power for testing linkage with a variety of nonnormal traits as compared with the standard VC and the regression-based methods.  相似文献   

6.
Extreme discordant sibling-pair (EDSP) designs have been shown in theory to be very powerful for mapping quantitative-trait loci (QTLs) in humans. However, their practical applicability has been somewhat limited by the need to phenotype very large populations to find enough pairs that are extremely discordant. In this paper, we demonstrate that there is also substantial power in pairs that are only moderately discordant, and that designs using moderately discordant pairs can yield a more practical balance between phenotyping and genotyping efforts. The power we demonstrate for moderately discordant pairs stems from a new statistical result. Statistical analysis in discordant-pair studies is generally done by testing for reduced identity by descent (IBD) sharing in the pairs. By contrast, the most commonly-used statistical methods for more standard QTL mapping are Haseman-Elston regression and variance-components analysis. Both of these use statistics that are functions of the trait values given IBD information for the pedigree. We show that IBD sharing statistics and "trait value given IBD" statistics contribute complementary rather than redundant information, and thus that statistics of the two types can be combined to form more powerful tests of linkage. We propose a simple composite statistic, and test it with simulation studies. The simulation results show that our composite statistic increases power only minimally for extremely discordant pairs. However, it boosts the power of moderately discordant pairs substantially and makes them a very practical alternative. Our composite statistic is straightforward to calculate with existing software; we give a practical example of its use by applying it to a Genetic Analysis Workshop (GAW) data set.  相似文献   

7.
Gorlova OY  Lei L  Zhu D  Weng SF  Shete S  Zhang Y  Li WD  Price RA  Amos CI 《Human genetics》2007,122(2):159-174
We present an extension of a regression-based quantitative-trait linkage analysis method to incorporate parent-of-origin effects. We separately regressed total, paternal, and maternal IBD sharing on traits’ squared sums and differences. We also developed a test for imprinting that indicates whether there is any difference between the paternal and maternal regression coefficients. Since this method treats the identity-by-descent information as the dependent variable that is conditioned on the trait, it can be readily applied to data from complex ascertainment processes. We performed a simulation study to examine the performance of the method. We found that when using empirical critical values, the method shows identical or higher power compared to existing methods for evaluation of parent-of-origin effect in linkage analysis of quantitative traits. Missing parental genotypes increase the type I error rate of the linkage test and decrease the power of the imprinting test. When the major gene has a low heritability, the power of the method decreases considerably, but the statistical tests still perform well. We also applied a permutation algorithm, which ensures the appropriate type I error rate for the test for imprinting. The method was applied to a data from a study of 6 body size related measures and 23 loci on chromosome 7 for 255 nuclear families. Multipoint identities-by-descent (IBD) were obtained using a modification of the SIMWALK 2 program. A parent-of-origin effect consistent with maternal imprinting was suggested at 99.67–111.26 Mb for body mass index, bioelectrical impedance analysis, waist circumference, and leptin concentration. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

8.
Nonparametric linkage analysis is widely used to map susceptibility genes for complex diseases. This paper introduces six nonparametric statistics for measuring marker allele sharing among the affected members of a pedigree. We compare the power of these new statistics and three previous statistics to detect linkage with Mendelian diseases having recessive, additive, and dominant modes of inheritance. The nine statistics represent all possible combinations of three different IBD scoring functions and three different schemes for sampling genes among affecteds. Our results strongly suggest that the statistic T(rec)(blocks) is best for recessive traits, while the two statistics T(kin)(pairs) and T(all)(kin) vie for best for an additive trait. The best statistic for a dominant trait is less clear. The statistics T(kin)(pairs) and T(all)(kin) are equally promising for small sibships, but in extended pedigrees the statistics T(dom)(blocks) and T(dom)(pairs) appear best. For a complex trait, we advocate computing several of these statistics.  相似文献   

9.
We present here four nonparametric statistics for linkage analysis that test whether pairs of affected relatives share marker alleles more often than expected. These statistics are based on simulating the null distribution of a given statistic conditional on the unaffecteds' marker genotypes. Each statistic uses a different measure of marker sharing: the SimAPM statistic uses the simulation-based affected-pedigree-member measure based on identity-by-state (IBS) sharing. The SimKIN (kinship) measure is 1.0 for identity-by-descent (IBD) sharing, 0.0 for no IBD status sharing, and the kinship coefficient when the IBD status is ambiguous. The simulation-based IBD (SimIBD) statistic uses a recursive algorithm to determine the probability of two affecteds sharing a specific allele IBD. The SimISO statistic is identical to SimIBD, except that it also measures marker similarity between unaffected pairs. We evaluated our statistics on data simulated under different two-locus disease models, comparing our results to those obtained with several other nonparametric statistics. Use of IBD information produces dramatic increases in power over the SimAPM method, which uses only IBS information. The power of our best statistic in most cases meets or exceeds the power of the other nonparametric statistics. Furthermore, our statistics perform comparisons between all affected relative pairs within general pedigrees and are not restricted to sib pairs or nuclear families.  相似文献   

10.
Multipoint quantitative-trait linkage analysis in general pedigrees.   总被引:49,自引:12,他引:37       下载免费PDF全文
Multipoint linkage analysis of quantitative-trait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint identity-by-descent (IBD) probability calculations. We extend the sib-pair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a chromosome for each relative pair. We have derived correlations in IBD sharing as a function of chromosomal distance for relative pairs in general pedigrees and provide a simple framework whereby these correlations can be easily obtained for any relative pair related by a single line of descent or by multiple independent lines of descent. Once calculated, the multipoint relative-pair IBDs can be utilized in variance-component linkage analysis, which considers the likelihood of the entire pedigree jointly. Examples are given that use simulated data, demonstrating both the accuracy of QTL localization and the increase in power provided by multipoint analysis with 5-, 10-, and 20-cM marker maps. The general pedigree variance component and IBD estimation methods have been implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package.  相似文献   

11.
Methods for detecting genetic linkage are more powerful when they fully use all of the data collected from pedigrees. We first discuss a method for obtaining the probability that a pedigree member has a given genotype, conditional on the phenotypes of his relatives. We then develop a rapid method to obtain the conditional probabilities of identity-by-descent sharing of marker alleles for all related pairs of individuals from extended pedigrees. The method assumes that the individuals are noninbred and that the relationship between genotype and phenotype is known for the marker locus studied. The probabilities of identity-by-descent sharing among relative pairs, conditional on marker phenotype information, can then be used in any of the model free tests for linkage between a trait locus and a marker locus.  相似文献   

12.
Abney M 《Genetics》2008,179(3):1577-1590
Computing identity-by-descent sharing between individuals connected through a large, complex pedigree is a computationally demanding task that often cannot be done using exact methods. What I present here is a rapid computational method for estimating, in large complex pedigrees, the probability that pairs of alleles are IBD given the single-point genotype data at that marker for all individuals. The method can be used on pedigrees of essentially arbitrary size and complexity without the need to divide the individuals into separate subpedigrees. I apply the method to do qualitative trait linkage mapping using the nonparametric sharing statistic S(pairs). The validity of the method is demonstrated via simulation studies on a 13-generation 3028-person pedigree with 700 genotyped individuals. An analysis of an asthma data set of individuals in this pedigree finds four loci with P-values <10(-3) that were not detected in prior analyses. The mapping method is fast and can complete analyses of approximately 150 affected individuals within this pedigree for thousands of markers in a matter of hours.  相似文献   

13.
14.
Haseman and Elston (H-E) proposed a robust test to detect linkage between a quantitative trait and a genetic marker. In their method the squared sib-pair trait difference is regressed on the estimated proportion of alleles at a locus shared identical by descent by sib pairs. This method has recently been improved by changing the dependent variable from the squared difference to the mean-corrected product of the sib-pair trait values, a significantly positive regression indicating linkage. Because situations arise in which the original test is more powerful, a further improvement of the H-E method occurs when the dependent variable is changed to a weighted average of the squared sib-pair trait difference and the squared sib-pair mean-corrected trait sum. Here we propose an optimal method of performing this weighting for larger sibships, allowing for the correlation between pairs within a sibship. The optimal weights are inversely proportional to the residual variances obtained from the two different regressions based on the squared sib-pair trait differences and the squared sib-pair mean-corrected trait sums, respectively, allowing for correlations among sib pairs. The proposed method is compared with the existing extension of the H-E approach for larger sibships. Control of the type I error probabilities for sibships of any size can be improved by using a generalized estimating equation approach and the robust sandwich estimate of the variance, or a Monte-Carlo permutation test.  相似文献   

15.
Jung J  Fan R  Jin L 《Genetics》2005,170(2):881-898
Using multiple diallelic markers, variance component models are proposed for high-resolution combined linkage and association mapping of quantitative trait loci (QTL) based on nuclear families. The objective is to build a model that may fully use marker information for fine association mapping of QTL in the presence of prior linkage. The measures of linkage disequilibrium and the genetic effects are incorporated in the mean coefficients and are decomposed into orthogonal additive and dominance effects. The linkage information is modeled in variance-covariance matrices. Hence, the proposed methods model both association and linkage in a unified model. On the basis of marker information, a multipoint interval mapping method is provided to estimate the proportion of allele sharing identical by descent (IBD) and the probability of sharing two alleles IBD at a putative QTL for a sib-pair. To test the association between the trait locus and the markers, both likelihood-ratio tests and F-tests can be constructed on the basis of the proposed models. In addition, analytical formulas of noncentrality parameter approximations of the F-test statistics are provided. Type I error rates of the proposed test statistics are calculated to show their robustness. After comparing with the association between-family and association within-family (AbAw) approach by Abecasis and Fulker et al., it is found that the method proposed in this article is more powerful and advantageous based on simulation study and power calculation. By power and sample size comparison, it is shown that models that use more markers may have higher power than models that use fewer markers. The multiple-marker analysis can be more advantageous and has higher power in fine mapping QTL. As an application, the Genetic Analysis Workshop 12 German asthma data are analyzed using the proposed methods.  相似文献   

16.
To test for linkage between a trait and a marker, one can consider identical marker alleles in related individuals, for instance, sibs. For recessive diseases, it has been shown that some information may be gained from the identity by descent (IBD) of the two alleles of an affected inbred individual at the marker locus. The aim of this paper is to extend the sib-pair method of linkage analysis to the situation of sib pairs sampled from consanguineous populations. This extension takes maximum advantage of the information provided by both the IBD pattern between sibs and allelic identity within each sib of the pair. This is possible through the use of the condensed identity coefficients. Here, we propose a new test of linkage based on a chi2. We compare the performance of this test with that of the classical chi2 test based on the distribution of sib pairs sharing 0, 1, or 2 alleles IBD. For sib pairs from first-cousin matings, the proposed test can better detect the role of a disease-susceptibility (DS) locus. Its power is shown to be greater than that of the classical test, especially for models where the DS allele may be common and incompletely penetrant; that is to say for situations that may be encountered in multifactorial diseases. A study of the impact of inbreeding on the expected proportions of sib pairs sharing 0, 1, or 2 alleles IBD is also performed here. Ignoring inbreeding, when in fact inbreeding exists, increases the rate of type I errors in tests of linkage.  相似文献   

17.
Gao G  Hoeschele I 《Genetics》2005,171(1):365-376
Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with high likelihoods identified by a haplotyping method. The new method is compared with a Markov chain Monte Carlo (MCMC) method (Loki) in terms of QTL mapping performance on simulated pedigrees. Both methods yield almost identical results for the estimation of QTL positions and variance parameters, while the new method is much more computationally efficient than the MCMC approach for large pedigrees and large numbers of loci. The proposed method is also compared with an exact method (Merlin) in small simulated pedigrees, where both methods produce nearly identical estimates of position-specific kinship coefficients. The new method can be used for fine mapping with joint linkage disequilibrium and linkage analysis, which improves the power and accuracy of QTL mapping.  相似文献   

18.
The Haseman-Elston (HE) regression method and its extensions are widely used in genetic studies for detecting linkage to quantitative trait loci (QTL) using sib pairs. The principle underlying the simple HE regression method is that the similarity in phenotypes between two siblings increases as they share an increasing number of alleles identical by descent (IBD) from their parents at a particular marker locus. In such a procedure, similarity was identified with the locations, that is, means of groups of sib pairs sharing 0, 1, and 2 alleles IBD. A more powerful, rank-based nonparametric test to detect increasing similarity in sib pairs is presented by combining univariate trend statistics not only of locations, but also of dispersions of the squared phenotypic differences of two siblings for three groups. This trend test does not rely on distributional assumptions, and is applicable to the skewed or leptokurtic phenotypic distributions, in addition to normal or near normal phenotypic distributions. The performances of nonparametric trend statistics, including nonparametric regression slope, are compared with the HE regression methods as genetic linkage strategies.  相似文献   

19.
Our Markov chain Monte Carlo (MCMC) methods were used in linkage analyses of the Framingham Heart Study data using all available pedigrees. Our goal was to detect and map loci associated with covariate-adjusted traits log triglyceride (lnTG) and high-density lipoprotein cholesterol (HDL) using multipoint LOD score analysis, Bayesian oligogenic linkage analysis and identity-by-descent (IBD) scoring methods. Each method used all marker data for all markers on a chromosome. Bayesian linkage analysis detected a linkage signal on chromosome 7 for lnTG and HDL, corroborating previously published results. However, these results were not replicated in a classical linkage analysis of the data or by using IBD scoring methods.We conclude that Bayesian linkage analysis provides a powerful paradigm for mapping trait loci but interpretation of the Bayesian linkage signals is subjective. In the absence of a LOD score method accommodating genetically complex traits and linkage heterogeneity, validation of these signals remains elusive.  相似文献   

20.
During the past few years, there has been a great deal of new work on methods for mapping quantitative-trait loci by use of sibling pairs and sibships. There are several new methods based on linear regression, as well as several more that are based on score statistics. In theory, most of the new methods should be relatively robust to violations of distributional assumptions and to selected sampling, but, in practice, there has been little evaluation of how the methods perform on selected samples. We survey most of the new regression-based statistics and score statistics and propose a few minor variations on the score statistics. We use simulation to evaluate the type I error and the power of all of the statistics, considering (a) population samples of sibling pairs and (b) sibling pairs ascertained on the basis of at least one sibling with a trait value in the top 10% of the distribution. Most of the statistics have correct type I error for selected samples. The statistics proposed by Xu et al. and by Sham and Purcell are generally the most powerful, along with one of our score statistic variants. Even among the methods that are most powerful for "nice" data, some are more robust than others to non-Gaussian trait models and/or misspecified trait parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号