首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Despite the widespread use of dwarfing rootstocks in the fruit-tree industry, their impact on tree architectural development and possible role in the within-tree balance between growth and flowering are still poorly understood, in particular during the early years of growth. The present study addressed this question in apple trees, through a detailed analysis of shoot populations, i.e. both vegetative and flowering shoots, during tree development. METHODS: Architectural databases were constructed for trees of two cultivars that were either own-rooted or grafted on dwarfing rootstock. Within-tree shoot demographics and annual shoot characteristics, i.e. their dimensions, number of laterals and flowering, were observed from the first to the fifth year of growth and compared among scion/root system combinations. KEY RESULTS: Differences in axis demographics appeared among scion/root system combinations after the second year of growth. Differences were found (a) in the number of long axes and (b) the number of medium axes. Dwarfing rootstock reduced the total number of axes developed in a tree, and this reduction resulted from proportionally more medium axes and spurs than long axes. The life span of spurs was also shortened. These phenomena appeared after an increase in flowering that started in the second year of growth and involved both axillary and terminal positions. Flowering regularity was also increased in grafted trees. CONCLUSIONS: These results confirm that the number of long shoots and flowering potential depend on the cultivar. They indicate that tree architectural plasticity in response to its root system mainly derives from the number of medium shoots developed and follows priorities within the whole tree axis population. There was also evidence for dwarfing rootstock involvement in adjusting the flowering abundance and that differences in flowering occurrence take precedence over those regarding vegetative growth during tree development.  相似文献   

2.
Genetic control of plant size and shape is a promising perspective,particularly in fruit trees, in order to select desirable genotypes.A recent study on architectural traits in an apple progeny showedthat internode length was a highly heritable character. However,few studies have been devoted to internode cellular patterningin dicotyledonous stems, and the interplay between the two elementarycell processes that contribute to their length, i.e. cell divisionand elongation, is not fully understood. The present study aimedat unravelling their contributions in the genetic variationof internode length in a selection of F1 and parent genotypesof apple tree, by exploring the number of cells and cell shapewithin mature internodes belonging to the main axes. The resultshighlighted that both the variables were homogeneous in samplescollected either along a sagital line or along the pith width,and suggest that cell lengthening was homogeneous during internodedevelopment. They allowed the total number of cells to be estimatedon the internode scale and opened up new perspectives for simplifyingtissue sampling procedures for further investigations. Differencesin internode length were observed between the genotypes, inparticular between the parents, and partly resulted from a compensationbetween cell number and cell length. However, genetic variationsin internode length primarily involved the number of cells,while cell length was more secondary. These results argue foran interplay between cellular and organismal control of internodeshape that may involve the rib meristem. Key words: Elongation, growth, histogenesis, Malusxdomestica Borkh, pith Received 2 January 2008; Revised 22 January 2008 Accepted 29 January 2008  相似文献   

3.
Modelling branching patterns on 1-year-old trunks of six apple cultivars   总被引:3,自引:0,他引:3  
The structure resulting from branching on 1-year-old apple tree trunks was analysed in a set of apple cultivars with diverse branching and fruiting habits. Four different lateral types borne on successive nodes were observed when vegetative and flowering fates, as well as sylleptic and proleptic branching, were taken into account. The location and grouping of lateral types along the trunk were analysed for all cultivars, but are detailed for one cultivar only. This cultivar showed a succession of zones, each zone being characterized by its composition of lateral types. Statistical models-hidden semi-Markov chains-were built to take this structure into account and to characterize the cultivar's specific branching pattern. The models showed that most of the branching zones had a similar location in the different cultivars, even though zone composition and zone length differed among cultivars. On a more detailed scale, the nodes bearing a lateral, regardless of its type, were frequently followed by latent buds. The validity of the models and their biological interpretation are discussed with respect to parent shoot dynamics, hormonal gradients and competition between neighbouring buds.  相似文献   

4.
Apple is an important crop and a focus of research worldwide. However, some aspects of floral commitment and morphogenesis remain unclear. A detailed characterization of bourse shoot apex development was undertaken to provide a framework for future genetic, molecular and physiological studies. Eight morphologically distinct stages of shoot apex development, prior to winter dormancy, were defined. Based on measurements of meristem diameter, two stages of vegetative development were recognized. Vegetative meristems were flat, and either narrow (stage 0) or broad (stage 1). Pronounced doming of the apex marked stage 2. During stage 3, the domed meristem initiated four to six lateral floral meristems and subtending bracts before converting to a terminal floral meristem (stage 4). The terminal floral meristem proceeded directly with bractlet and sepal initiation, while lateral floral meristems initiated bractlets (stage 5). Sepal initiation began on the basal lateral flower (stage 6) and continued in an acropetal direction until all floral meristems had completed sepal initiation (stage 7). In this study, only stage 0 and stage 7 apices were observed in dormant buds, indicating that stages 1-6 are transient. The results suggest that broadening of the apex (stage 1) is the first morphological sign of commitment to flowering.  相似文献   

5.
Architectural analysis was applied to study branch development of 'Royal Gala' apple trees grafted with dwarfing and non-dwarfing rootstock/interstock combinations, which had been chosen to produce trees with a wide range of vigour. Using AMAPmod methodology, the structure of 3-year-old branches was described at four levels of representation: branch; annual shoot; growth unit; and node. Three types of growth units were distinguished: extension growth unit (vegetative unit with internode extension); vegetative spur with minimal internode extension; and fruiting spur or bourse. The aim of the analysis was to describe exactly how the rootstock/interstock combinations affected the structure building process. The number of extension growth units, vegetative spurs and fruiting spurs per annual shoot changed over the years, but this was not affected by rootstock/interstock combination. Compared with MM.106 rootstock, M.9 rootstock reduced the number of nodes per extension growth unit. In most cases, rootstock/interstock combination had no effect on the linear relationship between extension growth unit length and node number (R(2) = 0.88). Average internode length depended on unit node number, with internodes being shorter for units with fewer nodes. Thus the difference in apple branch size induced by the rootstock/interstock combinations was mainly due to a reduction in the length and number of neoformed nodes produced on extension growth units. As percentage budbreak of axillary buds on extension growth units was not affected by rootstock/interstock combination, differences in numbers of axillary annual shoots per branch were entirely due to differences in the total numbers of nodes extended during the previous year.  相似文献   

6.
7.
BACKGROUND AND AIMS: The gynoecium of the domestic apple, Malus x domestica, has been assumed to be imperfectly syncarpic, whereby pollination of each stigmatic surface can result in fertilization within only one of the five carpels. Despite its implied effect on fruit quantity and quality, the resulting influence of flower form on seed set and distribution within the apple fruit has seldom been investigated. Instead, poor fruit quality is usually attributed to problems with pollination, such as low bee numbers and/or ineffective pollinators within apple agro-ecosystems. The objective of this study was to determine the true nature of gynoecial structure and its influence on fruit production in the apple cultivar 'Summerland McIntosh'. METHODS: A stigma-excision method was used to determine the effects of uneven pollination among the five stigmas on fruit quantity (as measured by fruit set), and quality (seed number and distribution). In addition, flowers were examined microscopically to determine pollen tube pathways. KEY RESULTS: Fruit set, seed number, seed distribution, and the microscopic examination of flower gynoecial structure reported in this study indicated that the gynoecium of the cultivar Summerland McIntosh is perfectly syncarpic and not imperfectly syncarpic as previously thought. CONCLUSIONS: Pollination levels among the five stigmas need not be uniform to obtain full seed development within Summerland McIntosh fruit; even if one stigmatic surface is adequately pollinated, a full complement of seeds is likely. The importance of perfect syncarpy in recognizing true causes of poor fruit quality in apple is discussed.  相似文献   

8.
BACKGROUND AND AIMS: Moss roses are old garden roses covered with a mossy growth on flower pedicel and calyx. This moss releases a pine-scented oleoresin that is very sticky and odoriferous. Rosa x centifolia 'muscosa' was the first moss rose to be obtained by bud-mutation but, interestingly, R. x damascena 'Quatre Saisons Blanc Mousseux' was the first repeat-blooming cultivar, thus interesting breeders. In the present study, the anatomy of these sports (i.e. bud-mutations) is characterized and the volatile organic compounds (VOCs) produced by the moss versus the petals are identified. They are compared between the two lines and their respective parents. METHODS: Anatomy of the moss is studied by environmental scanning electron microscopy and histochemical light microscopy. Sudan Red IV and Fluorol Yellow 088 are used to detect lipids, and 1-naphthol reaction with N,N-dimethyl-p-phenylenediamine to detect terpenes (Nadi reaction). Head-space or solid/liquid extraction followed by gas chromatography and mass spectrometry are used to identify VOCs in moss, trichomes and petals. KEY RESULTS: Moss of the two cultivars has the same structure with trichomes on other trichomes but not exactly the same VOCs. These VOCs are specific to the moss, with lots of terpenes. An identical VOC composition is found in leaves but not in petals. They are nearly the same in the moss mutants and in the respective wild types. CONCLUSIONS: Sepals of moss roses and their parents have a specific VOC pattern, different from that of the petals. The moss corresponds to a heterochronic mutation with trichomes developing on other trichomes. Such a mutation has probably appeared twice and independently in the two lines.  相似文献   

9.
This study examined the influence of high light levels on antioxidant metabolism and the photosynthetic properties of Begonia x erythrophylla leaves. The pigment composition of shaded leaves and those developing in full sunlight was typical of shade- and sun-leaves, respectively. After 28 d in full sunlight, the preformed leaves of shade plants transferred to full sunlight (transferred-leaves) showed photo-bleaching with lower Chl (a + b) content and Chl a : Chl b ratios than shade-leaves, with Chl (a + b) : carotenoid ratios not significantly different. The variable/maximal fluorescence (Fv/Fm) of sun-leaves was not significantly different from that of shade-leaves, but transferred-leaves had reduced Fv : Fm ratios. Light response curves for the electron transport rate (ETR), the oxidation state of photosystem II (qP) and non-photochemical quenching (NPQ) showed significant differences between the three leaf types, with transferred-leaves not able to acclimate completely to full sunlight, having lower ETR, qP and NPQ values at high light levels than sun-leaves. Transfer to full sunlight caused a rapid increase in H2O2 and lipid hyperoxides, and a slight increase in protein oxidation. Ascorbate and glutathione levels decreased rapidly, as did the size of the total glutathione pool and, in addition to the general oxidation of proteins, rapid decreases in both the initial and total activities of chloroplastic fructose-1,6-bisphosphatase and glyceraldehyde-3-phosphate dehydrogenase were observed. These results suggest that a more oxidizing cellular environment is the likely cause of the photo-bleaching observed upon transfer of shade-leaves to full sunlight. Acclimation of transferred-leaves to full sunlight involved gradual increases in the activities of enzymes involved in antioxidant metabolism, including superoxide dismutase, catalase, glutathione reductase, ascorbate peroxidase, dehydroascorbate reductase and monodehydroascorbate reductase, but the levels of these enzymes still remained at levels lower than those found in sun-leaves.  相似文献   

10.
11.
BACKGROUND AND AIMS: Leaf responses to environmental conditions have been frequently described in fruit trees, but differences among cultivars have received little attention. This study shows that parameters of Farquhar's photosynthesis and Jarvis' stomatal conductance models differed between two apple cultivars, and examines the consequences of these differences for leaf water use efficiency. METHODS: Leaf stomatal conductance (g(sw)), net CO2 assimilation rate (A(n)), respiration (R(d)) and transpiration (E) were measured during summer in 8-year-old 'Braeburn' and 'Fuji' apple trees under well-watered field conditions. Parameters of Farquhar's and Jarvis' models were estimated, evaluated and then compared between cultivars. Leaf carbon isotope discrimination (delta(13)C) was measured at the end of the growing season. KEY RESULTS: A single positive relationship was established between V(Cmax) (maximum carboxylation rate) and N(a) (leaf nitrogen concentration per unit area), and between J(max) (maximum light-driven electron transport rate) and N(a). A higher leaf R(d) was observed in 'Fuji'. The g(sw) responded similarly to increasing irradiance and leaf temperature in both cultivars. g(sw) responded to lower vapour pressure deficit in 'Fuji' than in 'Braeburn'. Maximal conductance (g(swmax)) was significantly smaller and A(n) was more limited by g(sw) in 'Braeburn' than 'Fuji'. Lower g(sw), E and higher intrinsic water use efficiency were shown in 'Braeburn' and confirmed by smaller leaf delta(13)C compared with 'Fuji' leaves. CONCLUSIONS: The use of functional model parameters allowed comparison of the two cultivars and provided evidence of different water use 'strategies': 'Braeburn' was more conservative in water use than 'Fuji', due to stomatal limitation of A(n), higher intrinsic water use efficiency and lower delta(13)C. These physiological traits need to be considered in relation to climate adaptation, breeding of new cultivars and horticultural practice.  相似文献   

12.
13.
Recent molecular analyses in several plant species revealedthat TERMINAL FLOWER1 (TFL1) and CENTRORADIALIS (CEN) homologsare involved in regulating the flowering time and/or maintainingthe inflorescence meristem. In apple (Malusxdomestica Borkh.),four TFL1/CEN-like genes, MdTFL1, MdTFL1a, MdCENa and MdCENb,were found and mapped by a similar position on putatively homoeologouslinkage groups. Apple TFL1/CEN-like genes functioned equivalentlyto TFL1 when expressed constitutively in transgenic Arabidopsisplants, suggesting that they have a potential to complementthe TFL1 function. Because MdTFL1 and MdTFL1a were expressedin the vegetative tissues in both the adult and juvenile phases,they could function redundantly as a flowering repressor anda regulator of vegetative meristem identity. On the other hand,MdCENa was mainly expressed in fruit receptacles, cultured tissuesand roots, suggesting that it is involved in the developmentof proliferating tissues but not in the control of the transitionfrom the juvenile to the adult phase. In contrast, MdCENb wassilenced in most organs probably due to gene duplication bythe polyploid origin of apple. The expression patterns of MdTFL1and MdCENa in apple were also supported by the heterologousexpression of β-glucuronidase fused with their promoterregions in transgenic Arabidopsis. Our results suggest thatfunctional divergence of the roles in the regulation of vegetativemeristem identity may have occurred among four TFL1/CEN-likegenes during evolution in apple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号