首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-(2-Mercaptopropionyl)-glycine (MPG) is a synthetic aminothiol antioxidant that is used in the treatment of cystinuria, rheumatoid arthritis, liver and skin disorders. Recent studies have shown that MPG can function as a chelating, cardioprotecting and a radioprotecting agent. Several other studies have shown that it may also act as a free radical scavenger because of its thiol group. Thiol-containing compounds have been detected in biological samples by various analytical methods such as spectrophotometric and colorimetric methods. However, these methods require several milliliters of a sample, time-consuming procedures and complicated derivatization steps, as well as having high detection limits. The present study describes a rapid, sensitive and relatively simple method for detecting MPG in biological tissues by using reverse-phase HPLC. With ThioGlo 3 [3H-Naphto[2,1-b] pyran, 9-acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl) phenyl-3-oxo-)] as the reagent, highly fluorescent derivatives of thiols can be obtained that are suitable for HPLC. MPG is derivatized with ThioGlo 3 and is then detected flourimetrically by reverse phase HPLC using a C18 column as the stationary phase. Acetonitrile: Water (75:25) with acetic acid and phosphoric acid (1 mL/L) is used as the mobile phase (excitation wavelength, 365 nm; emission wavelength, 445 nm). The calibration curve for MPG is linear over a range of 10-2500 nM (r=0.999) and the coefficients of the variation of within-run and between-run precision were found to be 0.3 and 2.1%, respectively. The detection limit was 5.07 nM per 20 microL injection volume. Quantitative relative recovery of MPG in the biological samples (plasma, lung, liver, kidney and brain) ranged from 90+/-5.3 to 106.7+/-9.3 %. Based on these results, we have concluded that this method is suitable for determining MPG in biological samples.  相似文献   

2.
We have established a new HPLC method for derivatizing and quantifying glufosinate (GLUF) in human serum and urine using p-nitrobenzoyl chloride (PNBC). The p-nitrobenzoyl derivative of GLUF (PNB-GLUF) was produced quantitatively over 10 min at room temperature. PNB-GLUF possesses the property of ultraviolet (UV) light absorption with a lambda(max) of 272.8 nm, and was isolated from biological specimens by reversed-phase chromatography using Inertsil Ph-3. In experiments at a UV wavelength of 273 nm, GLUF has a quantitative detection limit of 0.005 microg/ml, and when it was added to both serum and urine to yield concentrations of 0.1-1000 microg/ml, its recovery rate was quite satisfactory: at least 93.8% in all cases. Further, the measured amounts of GLUF in 23 serum samples from patients intoxicated by ingestion of GLUF compared favorably with those obtained by fluorescence derivatization-HPLC using 9-fluorenylmethyl chloroformate (R=0.998). This technique of analysis is, in addition, applicable for Glyphosat, which possesses a chemical structure resembling that of GLUF, and it will be of great use in the determination of these two compounds.  相似文献   

3.
2-Mercaptoethylamine (cysteamine) is an aminothiol compound used as a drug for the treatment of cystinosis, an autosomal recessive lysosomal storage disorder. Because of cysteamine's important role in clinical settings, its analysis by sensitive techniques has become pivotal. Unfortunately, the available methods are either complex or labor intensive. Therefore, we have developed a new rapid, sensitive, and simple method for determining cysteamine in biological samples (brain, kidney, liver, and plasma), using N-(1-pyrenyl) maleimide (NPM) as the derivatizing agent and reversed-phase high performance liquid chromatography (HPLC) with a fluorescence detection method (lambda(ex)=330 nm, lambda(em)=376 nm). The mobile phase was acetonitrile and water (70:30) with acetic acid and o-phosphoric acid (1 mL/L). The calibration curve for cysteamine in serine borate buffer (SBB) was found to be linear over a range of 0-1200 nM (r(2)=0.9993), and in plasma and liver matrix, the r(2) values were 0.9968 and 0.9965, respectively. The coefficients of the variation for the within-run and between-run precisions ranged from 0.68 to 9.90% and 0.63 to 4.17%, respectively. The percentage of relative recovery ranged from 94.1 to 98.6%.  相似文献   

4.
N-Hyroxysuccinimidyl-6-aminoquinoyl carbamate (AccQ.Fluor) was used as a polyamine pre-column derivatization reagent prior to HPLC analysis using a 5-μm C8 reversed-phase column. The fluorescence detector excitation wavelength was set at 250 nm and emission at 395 nm. Quantitation, reproducibility, linearity, recovery and stability were demonstrated. The lower limit of detection was 660 fmol. This method is 45 and 61 times more sensitive than those using the pre-column derivatizing agents dansyl chloride and orthophthalaldehyde, respectively. Applicability to biological samples was demonstrated by analyses of polyamines in extracts of mouse erythrocytes and Trypanosoma brucei brucei.  相似文献   

5.
Concentrations of 9-cis beta-carotene (9-cis betaC) and zeta-carotene (zetaC) in biological samples may provide crucial information on the biological activities of these carotenoids. However, in high-performance liquid chromatography (HPLC) these carotenoids are often co-eluted. Therefore, there is an urgent need to develop a method for 9-cis betaC and zetaC quantitation. Both 9-cis betaC and zetaC have peak absorbance at 400 and 450 nm, respectively, whereas only 9-cis betaC has peak absorbance at 475 nm. We developed a HPLC method to quantitate 9-cis betaC and zetaC by using peak absorbance ratios. The 9-cis betaC/zetaC peak area was monitored at 475, 450 and 400 nm. The 9-cis betaC was quantified by using absorbance value at 475 nm; zetaC was then calculated from the 9-cis betaC/zetaC peak at 400 nm by subtracting 9-cis betaC contribution at 400 nm using the 400-nm/475-nm peak absorbance ratio of 9-cis betaC (0.39). This method was applied to determine 9-cis betaC and zetaC concentrations in serum and breast milk samples (n=12) from American lactating women and serum and breast adipose tissue samples (n=16) from Korean women with either benign or malignant breast tumors. 9-cis betaC concentrations in serum and breast milk of American women, and serum and adipose tissue of Korean women were 7.1+/-0.8 and 1.1+/-0.2 nM, and 15.6+/-1.1 nM and 0.2+/-0.1 nmol/g, respectively. zetaC concentrations in the above samples were 54.2+/-7.2 and 8.3+/-1.8 nM, and 49.0+/-3.9 nM and 0.3+/-0.1 nmol/g, respectively.  相似文献   

6.
A high-performance liquid chromatographic (HPLC) method was developed for the determination of disodium mercaptoundecahydrododecaborate (BSH) in biological fluids. Monobromobimane was used as a precolumn derivatizing agent. A stable derivative was obtained. The derivative was separated on a C18 column using reversed-phase ion-pairing chromatography and detected by a spectrophotometric detector at 373 nm. The detection limit was 200 ng/ml (0.1 ppm boron). Calibration curves were prepared for rat urine and plasma samples. The calibration curves were linear in the range of 1 μg/ml to 100 μg/ml for urine samples and 0.2 μg/ml to 50 μg/ml for plasma samples.  相似文献   

7.
N-Acetylcysteine is a thiol antioxidant with expanding clinical importance. A sensitive, rapid method for determining reduced N-acetylcysteine (NAC) concentration in biological samples has been developed which uses a modified reversed-phase high-performance liquid chromatography (HPLC) technique in conjunction with the derivatizing agent N-(1-pyrenyl)maleimide (NPM). The NAC-NPM adduct was analyzed by HPLC with fluorescence detection. The calibration curve for NAC was linear over the range 8–2500 nM and the coefficient of variation obtained for the within-run precision and the between-run precision for 0.5 mM NAC was 1.5% and 2.7%, respectively. Relative recovery of NAC from biological materials ranged between 86% and 96% and the limit of quantitation from biological samples was 32 nM. These results suggest practical advantages relative to other widely-accepted methods of NAC measurement.  相似文献   

8.
A GC-MS method for the simultaneous determination of hexanal, heptanal, octanal, nonanal and decanal in exhaled breath was established and validated. The aldehydes were derivatized on PDMS/DVB fibres using O-2,2,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) as the headspace derivatization reagent. The resultant oximes were quantified by GC-MS in selected ion monitoring (SIM) mode. The method provides detection limits of 0.01-0.03 nM for the aldehydes, with a linear response in the concentration range 0.002-20 nM. Within-day precision values for the five aldehydes at 0.02-0.04 nM and 0.2-0.4 nM were in the ranges: 3-9% and 3-8%, respectively; the corresponding between-day precision values were 11-22% and 10-24%. Exhaled breath samples could be stored at -20 degrees C for 48 h.  相似文献   

9.
The importance of thiols has stimulated the development of a number of methods for determining glutathione and other biologically significant thiols. Methods that are currently available, however have some limitations, such as being time consuming and complex. In the present study, a new high-performance liquid chromatography (HPLC) method for determining biological thiols was developed by using 9-Acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)phenyl)-3-oxo-3H-naphtho[2,1-b]pyran (ThioGlo™3) as a derivatizing agent. ThioGlo™ reacts selectively and rapidly with the thiols to yield fluorescent adducts which can be detected fluorimetrically (λex=365 nm, λem=445 nm). The within-run coefficient of variation for glutathione (GSH) by this method ranges from 1.08 to 2.94% whereas the between-run coefficient of variation for GSH is 4.31–8.61%. For GSH, the detection limit is around 50 fmol and the GSH derivatives remain stable for 1 month, if kept at 4°C. Results for GSSG and cysteine are also included. The ThioGlo™ method is compared to our previous method in which N-(1-pyrenyl)maleimide (NPM) is used to derivatize thiol-containing compounds. The present method offers various advantages over the currently accepted techniques, including speed and sensitivity.  相似文献   

10.
A new chiral derivatizing agent for α-amino acids is described which leads to diastereomers that can be separated by reverse-phase HPLC with direct detection by a diode array detector. The main advantage of the presented procedure is the fact that an excess of the derivatizing reagent can be employed as the product exhibits an absorption maximum at 360 nm, while the reagent has its absorption maximum at 260 nm. Therefore, it is possible to suppress the reagent signal by a detection wavelength of 400 nm leading to an easy and general method for the enantioseparation of a mixture of dl-amino acids and the determination of the enantiomeric purity of α-amino acid as exemplified by 16 different α-amino acids.  相似文献   

11.
A selective, sensitive, accurate and precise liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of raloxifene and its three glucuronides: raloxifene-6-β-glucuronide (M1), raloxifene-4'-β-glucuronide (M2), raloxifene-6,4'-diglucuronide (M3) in urine samples is presented in this paper. To our knowledge the developed analytical method is the first fully validated method capable of simultaneous determination of raloxifene and its glucuronides in real urine samples. Moreover, for the first time a method for determination of raloxifene diglucuronide in relevant biological samples was introduced. Metabolites were obtained by a bioconversion process of raloxifene to its glucuronides using the microorganism Streptomyces sp. and were used as standards for validation. Urine samples were introduced to a simple solid phase extraction prior to the analysis by LC-MS/MS. The method was linear in a wide range with high determination coefficient (r(2) > 0.997). The limits of quantification achieved were 1.01, 1.95, 2.83 and 4.69 nM for raloxifene, M1, M2 and M3, respectively. The recoveries were higher than 92.5%, the accuracy was within 100 ± 8.8% and the precision was better than 12% for all compounds. The developed method was successfully applied to the real urine samples and showed to be appropriate for use in further research of still not completely discovered raloxifene pharmacokinetics. Furthermore, the presented method could also serve for a potential application in anti-doping analysis.  相似文献   

12.
A rapid and simple background-free high-performance liquid chromatographic (HPLC) approach has been developed for simultaneously determining free thiol compounds including coenzyme A (CoA), cysteine (Cys), glutathione (GSH) and N-acetyl-cysteine (NAC) in biological samples by using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide) difluoroboradiaza-s-indacene (TMPAB-o-M) as fluorogenic reagent. After derivatization under physiological conditions within 6 min, baseline separation was finished in just 6 min using isocratic elution with reversed-phase HPLC and fluorescence detection. Excellent linearity was observed for all analytes over their concentration ranges of 1-500 nM and detection limits ranging 0.13 nM for CoA to 0.25 nM for Cys (S/N=3) were achieved. The utility of the proposed method has been validated by measuring thiol compounds mentioned above in tissue, fluid and cell samples. The results indicated that this approach was well suited for high-throughput quantitative determination of thiols and study of the physiological role of them.  相似文献   

13.
A fully validated gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate and precise quantification of free 3-nitrotyrosine in human plasma at the basal state is described. In the plasma of 11 healthy humans a mean concentration of 2.8 nM (range 1.4-4.2 nM) for free 3-nitrotyrosine was determined by this method. This is the lowest concentration reported for free 3-nitrotyrosine in plasma of healthy humans. The presence of endogenous free 3-nitrotyrosine in human plasma was unequivocally shown by generating a daughter mass spectrum. Various precautions had to be taken to avoid artifactual formation of 3-nitrotyrosine from nitrate during sample treatment. Endogenous plasma 3-nitrotyrosine and 3-nitro-l-[(2)H(3)]tyrosine added for use as internal standard were isolated by high-performance liquid chromatographic (HPLC) analysis of 200-microl aliquots of plasma ultrafiltrate samples (20 kDa cut-off), extracted from a single HPLC fraction by solid-phase extraction, derivatized to their n-propyl ester-pentafluoropropionyl amide-trimethylsilyl ether derivatives, and quantified by GC-tandem MS. Overall recovery was determined as 50 +/- 5% using 3-nitro-l-[(14)C(9)]tyrosine. The limit of detection of the method was 4 amol of 3-nitrotyrosine, while the limit of quantitation was 125 pM using 3-nitro-l-[(14)C(9)]tyrosine. 3-Nitrotyrosine added to human plasma at 1 nM was quantitated with an accuracy of > or = 80% and a precision of > or = 94%. The method should be useful to investigate the utility of plasma free 3-nitrotyrosine as an indicator of nitric oxide ((.)NO)-associated oxidative stress in vivo in humans.  相似文献   

14.
Homogeneous noncompetitive assay of a protein in biological samples based on Förster-resonance-energy-transfer (FRET) was proposed by using its tryptophan residues as intrinsic donors and its specific fluorescent ligand as the FRET acceptor that was defined as an analytical FRET probe. Conjugate of a suitable fluorophore, which should have an excitation peak around 340 nm but an excitation valley around 280 nm, with a moiety binding to a protein of interest gave an analytical FRET probe to the protein. To test this method, N-biotinyl-N′-(1-naphthyl)-ethylenediamine (BNEDA) was used as an analytical FRET probe for homogeneous noncompetitive assay of streptavidin (SAV). The occurrence of FRET between the bound BNEDA and tryptophan residues was supported by the modeled geometry of the complex. By excitation at 280 nm, free BNEDA produced negligible fluorescence at 430 nm, but the bound BNEDA produced much higher stable fluorescence at 430 nm after 2 min of binding reaction. The competitive binding between BNEDA and biotin gave the dissociation constant of (16 ± 3) fM for BNEDA (n = 3). By excitation at 280 nm, fluorescence at 430 nm of reaction mixtures containing 32.0 nM BNEDA responded linearly to SAV subunit concentrations ranging from 0.40 to 30.0 nM with the desirable resistance to common interferences in biological samples. Therefore, by using tryptophan residue(s) in a protein of interest as intrinsic donor(s) and its fluorescent ligand as the corresponding FRET acceptor, this homogeneous noncompetitive assay of the protein in biological samples was effective and advantageous.  相似文献   

15.
The rapid and sensitive detection and characterization of human viruses and bacteriophage is extremely important in a variety of fields, such as medical diagnostics, immunology and vaccine research, and environmental contamination and quality control. We introduce an optical detection scheme for real-time and label-free detection of human viruses and bacteriophage as small as ~24 nm in radius. Combining the advantages of heterodyne interferometry and dark-field microscopy, this label-free method enables us to detect and characterize various biological nanoparticles with unsurpassed sensitivity and selectivity. We demonstrate the high sensitivity and precision of the method by analyzing a mixture containing HIV virus and bacteriophage. The method also resolves the distribution of small nano-impurities (~20-30 nm) in clinically relevant virus samples.  相似文献   

16.
We developed a method for assays of methylenetetrahydrofolate reductase and methionine synthase activities by monitoring their products of 5-methyltetrahydrofolate (5-CH(3)-H(4)folate) and tetrahydrofolate (H(4)folate) directly, using high-performance liquid chromatography with fluorescence detection. Folate derivatives and enzymes were stable in the assay process. No reagents in the assay mixture were found to disturb the separation and detection of both H(4)folate and 5-CH(3)-H(4)folate in our assay system. The detection limit of this method was less than 20 nM H(4)folate or 5-CH(3)-H(4)folate in the enzyme assay system. This analytical method, therefore, has a sensitivity high enough to obtain accurate parameters of Michaelis-Menten kinetics and for assays of crude extracts from various biological samples. In addition, the analytical procedure is very simple and economical; it may be a useful tool for studying methylenetetrahydrofolate reductase and methionine synthase activities.  相似文献   

17.
A simple and novel titania sol-gel derived optical biosensor coupled with carboxy seminaphthorhodamine-1-dextran (SNARF-1-dextran) as the fluorescent dye was fabricated for the determination of glutamate in water and biological samples. The NADH-dependent glutamate dehydrogenase (GLDH) was trapped in titania sol-gel derived matrix prepared by vapor deposition method. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the surface morphology of the spots. SEM and AFM images showed that the deposition of titania precursor at 27 degrees C for 6.5h was found to be suitable to form transparent titania sol-gel matrix to encapsulate GLDH and fluorescent probe. AFM images showed that the roughness of TiO(2) surface increased from 2.16 nm in the absence of GLDH and SNARF to 37.8 nm after the immobilization. The developed titania biosensor has good analytical performance with water samples. A dynamic range between 0.04 and 10mM with the detection limit of 5.5 microM were observed. The responses to glutamate in biological samples also showed good performances, and the dynamic range and detection limit were 0.02-10mM and 6.7 microM, respectively. High precision with relative standard deviations of 4.2 and 10.7% in water and biological samples, respectively, were also demonstrated. In addition, the biosensor showed a relatively high storage stability over more than 1 month. Results obtained in this study clearly demonstrate that this simple vapor deposition method can be successfully used to form transparent titania sol-gel film for the fabrication of glutamate biosensors that are suitable for optical detection of glutamate in water and biological samples.  相似文献   

18.
A liquid chromatographic (LC) method for sensitive and selective fluorometric determination of p-hydroxyphenylethylamino group containing compounds is described. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, 4-(1-pyrene)butanoyl chloride, followed by reversed-phase LC. The analytes, containing an amino moiety and a phenolic hydroxyl moiety in a molecule, were converted to the corresponding dipyrene-labeled derivatives by one-step derivatization. The dipyrene-labeled derivatives afforded intramolecular excimer fluorescence (440-540 nm), which can clearly be discriminated from the normal fluorescence (360-420 nm) emitted from reagent blanks. The derivatives of tyrosine and tyramine could be separated by reversed-phase LC on ODS column under conditions of isocratic elution. The detection limits (signal-to-noise ratio = 3) for tyrosine and tyramine were 4.5 and 2.6 fmol per 20 microL injection, which corresponded to analyte concentrations of 0.9 and 0.5 nM, respectively.  相似文献   

19.
The reaction between iodine and azide ions induced by thiopental was utilized as a postcolumn reaction for chromatographic determination of thiopental. The method is based on the separation of thiopental on an Nova-Pak CN HP column with an acetonitrile-aqueous solution of sodium azide as a mobile phase, followed by spectrophotometric measurement of the residual iodine (lambda=350 nm) from the postcolumn iodine-azide reaction induced by thiopental after mixing an iodine solution containing iodide ions with the column effluent containing azide ions and thiopental. Chromatograms obtained for thiopental showed negative peaks as a result of the decrease in background absorbance. The detection limit (defined as S/N=3) was 20 nM (0.4 pmol injected amount) for thiopental. Calibration graphs, plotted as peak area versus concentrations, were linear from 40 nM. The elaborated method was applied to determine thiopental in urine samples. The detection limit (defined as S/N=3) was 0.025 nmol/ml urine. Calibration graphs, plotted as peak area versus concentrations, were linear from 0.05 nmol/ml urine. Authentic urine samples were analyzed, thiopental was determined at nmol/ml urine level.  相似文献   

20.
Lipid hydroperoxides (LH) appear to be good candidates as initial biomarkers of oxidative stress. We describe an automated method to quantify it, based on a known principle: oxidation of Fe II to Fe III by lipid hydroperoxides, under acidic conditions, followed by complexation of Fe III by xylenol orange. This method requires only a 10-microl sample volume of heparinized plasma or serum. It has been carried out automatically, with two reagents, in a two-end-point mode with bichromatic detection at 570 and 700 nm. The within-run precision, measured on a low- and a high-level plasma, was 5.0+/-0.3 and 14.0+/-0.6 microM (n=25 for each series). The between-run precision (one run for 18 days), evaluated on two commercial controls, was 5.6+/-0.5 microM (CV=8.9%) and 7.9+/-0.5 microM (CV=6.3%). The recovery of known amounts of tert-butylhydroperoxide (1 and 2 microM) added to human plasma was 98%. The specificity was demonstrated by the excellent correlation of the values of 42 samples measured either directly, with a simple dilution, or after gel permeation chromatography. The reference interval determined on 21 subjects was 4.9+/-1.7 microM. This was in the upper range of previously published values but our recovery and chromatographic experiments strongly suggest that former methods have underestimated the true content of LH in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号